設計情報駆動研究会第2回研究会 2017年10月22日@KKRホテル金沢

流体の秩序運動に基づく機器最適設計への試み

燒野 藍子

東北大学流体科学研究所

航空宇宙流体工学分野 助教

自己紹介

- 名前 焼野 藍子 (やけの あいこ)
- •研究領域 流体力学(乱流/流体制御/数値流体力学)
- 研究履歴
 - 2017年10月- 現職
 - 2016年4月-2017年9月 海洋研究開発機構
 - 気候変動適応技術開発PT 特任技術研究員
 - 2012年10月-2016年3月 宇宙航空研究開発機構
 - 宇宙科学研究所 招聘研究員
 - 2012年4月-2012年9月 首都大学東京
 - ・システムデザイン学部航空宇宙工学コース 特任助教
 - 2007年4月-2012年3月 東京大学大学院
 - 工学系研究科機械工学専攻 博士(工学)取得
 - 2003年4月-2007年3月 大阪大学

今日の内容

「流体の秩序運動に基づく機器最適設計への試み」

- ・流体制御の分類 -柔よく剛を制す-
- ・1. スパン方向壁振動による摩擦抵抗低減制御
 - 1-(a) 壁乱流準秩序構造について
 - 1-(b) スパン方向壁振動による制御性能と制御機構について
- ・2. 二次元ハンプ周り剥離制御
 - 制御性能と制御機構について

非線形・散逸性・偶然性 乱流をどのように制御したらよいか?

流体制御の分類

受動制御

▶ Placoid scale (楯燐/ジュンリン)

Szodruch J., *AIAA Paper* 91-0685 (1991)

能動制御

フィードバック制御

プレデターミンド制御

- ◎ <u>時空間周期的で単純</u>な制御系
- ◎ 高い摩擦抵抗低減率
- × 投入エネルギーが大きい
- × 制御機構が未解明(?)

制御の対象

- ・制御の手法はさまざま
- •利用する流体物理がそれぞれ異なる
 - ・受動制御
 - 層流化翼
 - 粘性抵抗を低減するため遷移を抑制する
 - ボルテックスジェネレータ
 - 圧力抵抗を低減するため遷移を促進する
 - ・リブレット
 - (未解明)
 - 能動制御
 - 電動ファン
 - 渦を生成することで流体混合を促進する
 - ・ 食道のぜん動運動 (プレデターミンド制御)
 - (未解明)

プレデターミンド制御

スパン方向壁振動制御

・チャネル両壁を、スパン方向に振動させる制御

第二ストークス問題の解(層流を仮定)
$$\langle w \rangle (y,t) = W_m \exp\left(-\frac{y}{\delta}\right) \sin\left(\frac{2\pi t}{T} - \frac{y}{\delta}\right), \delta = \sqrt{\frac{T}{\pi}}$$

スパン方向壁振動制御

Contour : *U* at $y^+=5$ (red 7.0, blue 2.5) Iso-surface : $Q^+=-0.013$

制御の効果

圧力勾配一定条件

- P_0 :非制御時のポンプ動力
- :制御時のポンプ動力
- :制御に要するエネルギー

粘性摩擦抵抗とレイノルズ応力

12

振動場の乱流統計量の解析

レイノルズ応力の分布

- チャネル乱流場の
 レイノルズ応力
- レイノルズ応力は
 位相変動とそれ
 以外の乱れ成分
 に分解できる

$$\overline{u'v'} = \overline{\widetilde{u'v'}} = \overline{(\widetilde{\tilde{u}+u''})(\widetilde{v}+v'')}$$
$$= \overline{\widetilde{\tilde{u}}\widetilde{\tilde{v}}+\widetilde{u''}\widetilde{v}+\widetilde{\tilde{u}}v''+\widetilde{u''v''}}$$
$$= \overline{\tilde{u}}\widetilde{\tilde{v}}+\overline{u''v''}$$
$$= \overline{u''v''}.$$

(Yakeno et al., 2014)

渦構造とレイノルズ応力

レイノルズ応力四象限の U, 増加への寄与 $\overline{u}_{b}^{+} = \frac{\operatorname{Re}_{\tau}}{3} - \int_{0}^{\operatorname{Re}_{\tau}} \left(1 - \frac{y^{+}}{\operatorname{Re}_{\tau}}\right) \left(-\overline{u'^{+}v'^{+}}\right) dy^{+}$

Oscillation period T+

✓ T = 75 が最適な制御周期, レイノルズ応力 Q2 イベントが最も低減
 ✓ 長い制御周期では, レイノルズ応力 Q4 イベントが増加 → 摩擦が増加する 16

縦渦構造の条件付き抽出

条件付き抽出した縦渦構造と レイノルズ応力Q2とQ4

抽出条件 ✓ *Q* = ∂*u_i/∂x_j* ∂*u_j/∂x_i* < -0.02

- ✓Qの最小となる点
- ✓ 回転方向 *ω_x*>0
- √ 平均する渦構造周りの検査体積

$$\lambda_x = -60 \sim 60$$
$$\lambda_y = 60 \ \lambda_z = -60 \sim 60$$

レイノルズ応力の位相変化

18

Q2とQ4 低減/増加の起こる位相

Q2 の低減

(Yakeno et al., 2014)

Q2の低減は $\partial \tilde{w} / \partial y$ が渦の下部 y = 10 で最大となる位相となっている

縦渦構造の傾き _{正の方向} fx

Iso-surface Q = -0.02 grey contour <-2 $p'' \partial u''/dx$ >

Q4の低減と増加

摩擦抵抗低減効果

- ✓ Q2イベントの低減は渦の下部 y ~ 10 での渦回転と反対方向の平均速度剪断が最 大となる位相で起こる
- ✓長い周期でのQ4の増加は渦の存在する y~15 付近の平均速度剪断により渦構造 が傾けられ、渦内部の圧力ひずみ相関が増加し、生成が増加するために起こる
- ✓ 摩擦抵抗低減効果は、ストークス層の解析解から得られる∂w/∂y によって以下のように見積もられると考えられる

$$\Delta U_{b \ model} = \alpha \left(\frac{\partial \tilde{w}}{\partial y}\right)_{y=10} - \beta \left(\frac{\partial \tilde{w}}{\partial y}\right)_{y=15} - \beta \left(\frac{\partial \tilde{w}}{\partial$$

```
(Yakeno et al., 2014)
```

バルク流量増加 *ΔU_b*

今日の内容

「流体の秩序運動に基づく機器最適設計への試み」

- 流体制御の分類 -柔よく剛を制す-
- ・1. スパン方向壁振動による摩擦抵抗低減制御
 - 1-(a) 壁乱流準秩序構造について
 - 1-(b) スパン方向壁振動による制御性能と制御機構について
- ・2. 二次元ハンプ周り剥離制御
 - 制御性能と制御機構について

二次元ハンプ周り剥離制御

Iso-surfaces of II (the second invariant of ∂Ui/∂xj) colored with velocity

そもそも剥離制御では 何をするのか?

- 圧力抵抗の低減が目的
- 方法:運動量を付与する
 - ・流速を増加する
 - 乱れを増加する

速度分布の変化 → 剥離領域の低減

そもそも剥離制御では何をするのか?

- 圧力抵抗の低減が目的
- 方法:運動量を付与する
 - ・流速を増加する
 - 乱れを増加する

$$\bar{u}\frac{\partial\bar{u}}{\partial x} + \bar{w}\frac{\partial\bar{u}}{\partial z} - \frac{1}{Re_h}\frac{\partial^2\bar{u}}{\partial x_j\partial x_j} = -\frac{\partial\bar{p}}{\partial x} - \frac{\partial\overline{u'u'}}{\partial x} - \frac{\partial\overline{u'w'}}{\partial z}$$

乱れ成分の増加による
運動量の付与

• Characteristics

- ・単純なシステム
- ・ 機械的に動かない
- 流量の増減がない
- ・高電圧が必要(危険)

Consist of

- 薄い絶縁材料を金属膜で挟ん だ構造
- 交流電圧を付与するとプラズマ 状態が作られる
- 電離状態で生じた陽イオンの 移動が空気流となる
- Computation & Experiment
 - Moreal, 2007, Corke et al., 2009, Cho and Shyy, 2010, Wang et al., 2013, Aono et al., 2015
 High-Speed Aerodynamics Laboratory

A.C. voltage source

Schematic diagram is from Aono, Sekimoto, Sato, Yakeno, Nonomura and Fujii, 2015

30

剥離制御の直接数値計算

- 流出境界条件: 2nd order filtering
- 制御体積力はハンプ頂上(x_{act} = 0.0)

-0.2 -0.1 0.0 0.1 0.2 5 x

支配方程式中のプラズマアク チュエータ体積力

• 支配方程式

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_k}{\partial x_k} = 0,$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial (\rho u_i u_k + p \delta_{ik})}{\partial x_k} = \frac{1}{Re_h} \frac{\partial \tau_{ik}}{\partial x_k} + S_i,$$

$$\frac{\partial e}{\partial t} + \frac{\partial ((e+p)u_k)}{\partial x_k} = \frac{1}{Re_h} \frac{\partial u_l \tau_{kl}}{\partial x_k} + S_k u_k$$

$$+ \frac{1}{(\gamma - 1)PrRe_h M^2} \frac{\partial q_k}{\partial x_k}.$$

$$S_x = D_c \sin^2(2\pi F_{base} t)$$

$$F_{base}(= f_{base} h/u_{inf}) = 240 \quad (\text{very high})$$

$$(\forall \text{ of } 1/f_h^{32})$$

ベース周波数 (f_{base})は高く、バースト比 (BR/f_h) は小さく
 設定 (1%) << 2D vortex scale

Q = 1.0Contour u : -1.0 – 1.0

Q = 0.1 Contour u : -1.0 – 1.0

後流には二次元のロール渦が発生,その間に三次元のリブ構造が生じ,これに伴いスパン方向速度変動は増加していく 34

制御結果 制御あり

(Yakeno et al., 2015)

Q = 0.1

時間平均の統計量

f_h = 0.2 の場合で最も早く付着する 過去の知見と一致

剥離領域長さ X_{sep.}

(Yakeno et al., 2015)

Re = 4,000

最も早く付着する周波数 $f_h = 0.2$ はレイノルズ数に依存しない!

37

周波数依存性について

(Yakeno et al., 2015)

低い周波数では、大きな ロール渦が一つ生じる 高い周波数では,ロール 渦の列ができる

自由せん断層の線形安定性

- •基本流
 - Hyperbolic-tangent

Figure 1 Sketch of spatially developing mixing layer.

(Ho and Huerre, 1984)

高周波数に a; e R よる制御の 場合に相当 .10 $f heta/ar{U}$ = 0.032 .06 .08 0 .02 .04 fe U $f_h = 0.5$ $f_h = 1.0$ $\bar{U} = 0.5$ f_h 0.8 $\theta = 0.02$ 40

• 空間増幅率

二次元ロール渦のスケール解析

1 バースト=1波

$$\lambda_x = \frac{\overline{u}_{conv.}}{f_h}$$
 $\overline{u}_{conv.} = 0.5$
 $\lambda_x = 0.5$
 $\lambda_x = 0.5$
 $(f_h = 1.0)$

 High frequency
 $p\rangle$

 1 2 3 4
 $f_h = 0.25$
 0.0
 2.0
 4.0
 6.0
 $g_p\rangle$
 $f_h = 0.25$

 (今回試したケースの中で)

 最も効果の高い周波数

 $f_h = 0.25$

 (今回試したケースの中で)

 最も効果の高い周波数

 $f_h = 0.25$

 第の直径

 $\overline{u}_{conv.} = 0.5$

 渦の直径が決まっている

 $D = 1.0$

 1.6π

 Low frequency

 $p\rangle$

 1.0

 0.0
 2.0
 4.0
 6.0
 8.0
 p_h
 1.0
 0.965

剥離制御まとめ1

- ・作られる二次元ロール渦 (位相変動成分) は周波数に よって異なる傾向
 - 高周波数の制御駆動では、二次元ロールの渦列が生成、その 波長は振動周波数に依存する
 - 低周波数の制御駆動では、二次元ロール渦が一つ生成、その 波長はハンプ高さで定まる.
- ・ (今回比較した中で)最も効果的な周波数はレイノルズ数 によらない
 - いずれのレイノルズ数 (Reb = 4,000 or 16,00)でも fb = 0.20 がよ 11
- ・ハンプ高さスケールの渦が一つ生成する時間スケール は、(今回比較した中で)最も効果的な周波数と同じ ・ハンプ高さを直径とする渦スケールは $f_h = 0.25$ となる

乱流変動成分

スパン方向速度変動のrms分布

乱流変動成分

スパン方向速度変動のrms分布

乱流変動成分

- ・高レイノルズ数では、周波数によりあまり変化しない
- ・低い周波数(ハンプ高さスケール渦を生成)では後流のロール
 渦のある付近で増加
- 乱流変動成分のピーク値は、剥離制御の効果と相関している

剥離制御まとめ2

- ・三次元リブ構造 (乱流変動成分) の増加は制御性 能と相関している
 - 乱流変動成分の値 f_h = 0.20 で最も大きくなる
- ・乱流変動成分は、低い周波数場合に二次元ロー ル渦が生成する付近で増加している
 - スパン方向速度成分のrms値は f_h = 0.20のとき x = 2.5
 付近で増加する

効果的な周波数とは何か?

- ・これまでの結果から、効果的な周波数 $f_h = 0.20$ と は以下の要因から定まると考えられる
 - ハンプ高さスケールの渦を生成するのに十分な時間の、 低い周波数である
 - その中で、剥離位置近くで乱流変動(三次元リブ構造)
 を最も増加させる、高い周波数である

剥離制御時の 運動量バランスの変化

Aiko Yakeno, Soshi Kawai, Taku Nonomura and Kozo Fujii, IJHFF (2015)

$$\bar{u}\frac{\partial\bar{w}}{\partial x} + \bar{w}\frac{\partial\bar{w}}{\partial z} + \frac{\partial\overline{u'w'}}{\partial x} + \underbrace{\frac{\partial\overline{w'^2}}{\partial z}}_{\partial z} = \underbrace{-\frac{1}{\bar{\rho}}\frac{\partial\bar{p}}{\partial z}}_{\bar{\rho}} + \frac{1}{Re_h}\frac{\partial^2\bar{w}}{\partial x_j\partial x_j}$$

剥離制御には高さ方向速度 変動を作り出すことが重要?!

 $\partial \overline{w'^2}/\partial z$

49