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Abstract—Optimizer is an essence in design-informatics to
efficiently obtain nondominated solutions. In the present study,
the best optimizer is decided through the competition for the
mathematical standard test functions and is also applied to a
conceptual design problem of single-stage simple hybrid rocket
as the real-world problem. Consequently, a hybrid method
between differential evolution and genetic algorithm has good
exploration performance. Moreover, the principal component
analysis blended crossover and the confidence interval based
crossover have good capability on the hybrid method between
differential evolution and genetic algorithm.

I. I NTRODUCTION

The results produced by multiobjective (MO) optimization
are not an individual optimal solution but rather an entire set
of optimal solutions. This set generated by an MO optimiza-
tion can be considered a hypothetical design database. Then,
data mining techniques can be applied to this hypothetical
database to acquire not only useful design knowledge but also
structuring and visualizing of design space. This approach
was suggested as design-informatics[1]. The design problem
is firstly defined as objective functions, constraints, and design
space. And then, optimization is implemented to obtain non-
dominated solutions for database construction. The purpose of
this approach is the conception support for designers in order
to materialize innovation. This methodology is constructed
by the three essences as problem definition, optimization,
and information mining. In this study, optimizer for efficient
exploration in design space is focused because the quality of
hypothetical design database depends on that. The objective of
this study is the evaluation of several evolutionary algorithms
and their hybrid methods.

In the present study, the practical engineering applica-
tion with large evaluation time is assumed. Therefore, the
evolutionary optimizer which efficiently explores in a small
number of generations is needed. Differential evolution has
recently better performance than genetic algorithm in MO
optimization[2]. Then, the performance of a genetic algorithm
(GA)[3], a differential evolution (DE)[4], a particle swarm
optimization (PSO)[5](GA and DE have advantage for global
search while PSO is advantage for local search), and their
hybrid methods is validated to employ practical engineering
applications. Hence, they evaluate under the condition of a
small number of population and generation. The qualitative
performance is evaluated for the mathematical standard test

functions for which the influence of noise are considered.
As a next step, the capability of crossover is investigated for
the same test functions. Their optimization methods are also
applied to single-stage simple hybrid rocket design in order to
refine the problem definition.

II. OPTIMIZERS

A. Hybrid Algorithm

Three optimizers, as GA, DE, and PSO, are coupled. First,
multiple solutions are generated randomly as an initial popula-
tion. Then, objective function values are evaluated for each so-
lution. After the evaluation, the populations is equally divided
into sub-populations for the operations in each optimizer(as
this sub-population size can be decided in every generation,
pure GA can be single performed when the sub-populations of
DE and PSO are zero for example). New solutions generated
by each operation are combined in the next generation. Non-
dominated solutions in the combined population are archived.
It is notable that only the archive data are shared among the
each optimizer, the respective optimizers are independently
carried out in the hybrid algorithm. Therefore, the total number
of seven optimizers were evaluated as pure GA, pure DE, pure
PSO, hybrid GA/PSO, hybrid DE/PSO, hybrid GA/DE, and
hybrid GA/DE/PSO. It is notable that the range adaptation
was performed at every 20 generations.

B. Configuration of GA Operators

Fonseca’s Pareto ranking[6] and crowding distance[7] were
used as the fitness value of each solution. The crowding dis-
tance was defined as the sum of Euclidean distances between
the solution and its two nearest neighbors. As crossover opera-
tors, the blended crossover(BLX)-α and the unimodal normal
distribution crossover(UNDX) were used, which equally di-
vided sub-population.

III. E VALUATION USING TEST FUNCTIONS

A. Performance Metrics

Several performance measurement manners for evaluating
the efficiency of MOEAs were suggested[8]. In this study, the
following three metrics were used.



1) Convergence Metric:The first metric isConvergence
metric Υ [9]. It measures the distance between the obtained
non-dominated frontQ and the setP ∗ of Pareto-optimum
solutions as follows:

Υ =
1

|Q|
∑
i∈Q

di, (1)

where di denotes the Euclidean distance in the objective-
function space between the solutioni ∈ Q and the nearest
member ofP ∗. The value near zero means better performance.

2) Cover Rate:The second metric isCover rateRc[10]. Rc

evaluates the width and closeness of non-dominated solutions
compared with Pareto-optimum front. The design space closed
by the objective values from minimum to maximum is taken
discretization. This metric describes the degree that non-
dominated solutions cover discrete region. In this study, two-
/three-dimensional test functions are evaluated. The objective-
function space is separated by squares and cubes. The cover
rateRc is the following equation:

Rc =
NNDS

NPareto
, (2)

whereNNDS denotes the number of the cubes included in the
derived non-dominated solutions.NPareto denotes the number
of the cubes intersected by the Pareto front. The maximum
value of Rc gives one and the minimum value ofRc gives
zero, and then the value near one means better performance.

3) Hypervolume:The hypervolume indicator (orS metric)
is described as the Lebesgue measureΛ of the union of
hypercubesai defined by a non-dominated pointmi and a
reference pointxref [11]:

S(M)
def≡ Λ

({∪
i

ai|mi ∈ M

})

= Λ

( ∪
m∈M

{x|m ≺ x ≺ xref}

) (3)

B. Test Function

Three standard test function problems are employed in
order to evaluate the performance of optimizers under the
consideration of noise described by using normal distribution
with random number. The first function is DTLZ3[12] without
noise using three objective functions and 10 design variables.
The second function is ZDT1[13] with/without noise, which is
a simple two-dimensional problem with 10 design variables.
The final function is TNK[14] with noise as a constraint two-
dimensional test function. When an optimizer is applied to
practical problems, experimental and computational values are
employed as those of objective functions. Experiment includes
error due to the flow quality in wind tunnel. Computation
(computational fluid dynamicsetc.) similarly has error due to
mesh and various modelingetc. That is, as noise is occurred
for the evaluated value under an identical condition, the con-
sideration of noise is important to investigate the performance
of optimizer applicable to practical engineering problem.

1) DTLZ3: This is a generic sphere problem. The Pareto-
optimal surface always occurs for the minimum ofg(x) func-
tion. The number of design variables and objective functions
set in this paper were 10 and three for DTLZ3.

Minimize: f1(x) = cos
(π
2
x1

)
cos
(π
2
x2

)
(1 + g(x))

Minimize: f2(x) = cos
(π
2
x1

)
sin
(π
2
x2

)
(1 + g(x))

Minimize: f3(x) = sin
(π
2
x2

)
(1 + g(x))

subject to: g(x) = 100×[
k +

K∑
k=3

{
(xk − 0.5)

2 − cos (20π (xk − 0.5))
}]

≥ 0,

0 ≤ xk ≤ 1, k = 1, 2, · · · ,K, K = 10.
(4)

The Pareto-optimum solution corresponds toxi = 0.5 (for all
xi ∈ x) and the objective function values lie inside the first
octant of the unit sphere

∑3
m=1 fm = 1 in a three-objective

plot. All local Pareto-optimal fronts are parallel to the global
Pareto-optimal front and an MOEA can get stuck at any of
these local Pareto-optimal fronts, before converging to the
global Pareto-optimal front.

2) ZDT1: As a test problem with noise, the following two-
dimensional test function was considered:

Minimize: f1(x) = x1

Minimize: f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)

subject to: g(x) = 1 + 9 · 1

K − 1

K∑
k=2

xk,

0 ≤ xk ≤ 1, k = 1, 2, · · · ,K, K = 30.
(5)

The Pareto-optimum front is formed withg(x) = 1. As noise
is appended to this test function, the performance for noise
occurred in practical problems is confirmed.

3) TNK: As a test problem with noise, the following two-
dimensional test function was considered:

Minimize: f1(x) = x1

Minimize: f2(x) = x2

subject to: c1(x) = x2
1 + x2

2

−1− 0.1 cos

(
16 arctan

x2

x1

)
≥ 0

c2(x) =

(
x1 −

1

2

)2

+

(
x2 −

1

2

)2

≤ 1

2
0 < xi ≤ π, i = 1, 2.

(6)
This is a two real-valued variable constrained test problem.
Since the function is simple and the objective-function space
corresponds to the design-variable space, the Pareto front is
determined by the constraints. As this function is a minimiza-
tion problem, the discontinuous region which is not dominated
by the other region in the curve described byc1(x) = 0. The
ratio which the feasible region accounts is approximately 5%
of the whole region. The Pareto front of this test function is
non-convex surface. Therefore, this test function with noise
reveals the performance for intricate practical problems.



Fig. 1. Histories of convergence metric for each optimizer.

Fig. 2. Histories of cover rate for each optimizer. As all data for DTLZ3
and TNK are zero, their histories were omitted.

C. Results

The population size and the maximum number of gen-
erations were respectively set to be 18 and 200. As the
purpose of performance evaluation for several optimizations is
to be applied to large-scale and real-world engineering design
problem(for example, it takes one week for one-generation
evaluation), comparatively small values were used. It is no-
table that the average values of 20 runs with different initial
populations generated randomly were employed for evaluation.

The histories of convergence metric shown in Fig. 1 reveal
that pure DE and the hybrid methods including DE have
good performance. DE sustains damageless from noise. GA
does not have much influence from noise. Although pure
PSO has poor performance regarding noise, the hybridization
with DE improve it. The hybridization between GA and DE
gives the potentiating effect for the performance. Although the
hybridization between PSO and the others also gives similar
effects, the frailty of pure PSO for noise is bottleneck.

The histories of cover rate shown in Fig. 2 also reveal
that pure DE and the hybrid methods including DE have
robustness for noise. GA does not have good performance.
DE has adamant performance for noise, and also the hybrid
methods including DE maintain similar robustness. Although
pure PSO is frail for noise, the hybridization including PSO
has compatibility.

Fig. 3. Histories of hypervolume for each optimizer.

The histories of hypervolume shown in Fig. 3 also reveal
that pure DE does not have good performance in the case
without noise, but has robustness in the case with noise. DE
has stable performance. Pure GA has good performance in
the case without noise, however, it is not good and problem
dependency in the case with noise. Pure PSO is unstable in
spite of noise and its performance depends on the test prob-
lems. In the case without noise, pure DE and the hybridization
using DE are better. The hybridization including DE is also
good for the problems with noise due to the restoration of pure
DE performance. Note that there is no meaningful difference
regarding the results for TNK.

As a result, a hybrid method between GA and DE will be
selected to apply to a large-scale engineering design problem
because pure DE is robust and stable for noise and pure
GA is expected to have latent performance due to complex
operator compared with DE. PSO which does not have the
strength for noise and the hybrid method with PSO should
not be selected because practical engineering design problem
certainly includes noise.

IV. A PPLICATION TO HYBRID ROCKET PROBLEM

The conceptual design for a single-stage simple hybrid
rocket[15], which is composed of a thrust chamber, an oxidizer
tank, a nozzle, and a payload, is considered in the present
study. This problem is developing and modifying for the
evaluation of optimizer applicable to large-scale and real-
world design problem. Here, the seven optimizers evaluated
by the standard test functions are applied to this hybrid rocket
problem, and then the refinement points of it will be confirmed
as well as the performance of each optimizer is compared.

A. Objective Functions

Two objective functions are defined in this study. One is the
maximization of maximum altitudeHmax [km] and the other
is the minimization of gross vehicle weightMtot(0) [kg]. Note



that three other objective functions can be added for this design
problem.

B. Design Variables

Six design variables are used as initial mass flow of oxidizer
ṁoxi(0) [kg/sec], fuel lengthLfuel [m], initial radius of port
rport(0) [m], combustion timetburn [sec], initial pressure
in combustion chamberPcc(0) [MPa], and aperture ratio of
nozzleϵ [-].

C. Evaluation Methods

1) Trajectory Analysis:The following equation of motion
described by using thrustT (t) [N] and drag D(t) [N] is
computed.

Mtot(t) {a(t)− g} = T (t)−D(t) (7)

T (t) is evaluated by using the following equation.

T (t) = ηT {λṁprop(t) · ue + (Pe − Pa) ·Ae} (8)

where,ηT is total thrust loss coefficient,λ is momentum loss
coefficient at nozzle exit by friction,̇mprop(t) is mass flow
of propellant,ue is velocity at nozzle exit,Pe is pressure at
nozzle exit,Pa is pressure of atmosphere at flight altitude, and
Ae describes area of nozzle exit.

ṁprop(t) = −(ṁoxi(t) + ṁfuel(t))

ṁfuel(t) = 2πrport(t)Lfuelρfuel ṙport(t)

rport(t) = rport(0) +

∫
ṙport(t)dt

(9)

Figure x shows the definition of shape and symbols. A
combustion chamber has solid fuel with a single port to supply
oxidizer. The regression rate to the radial direction of the fuel
ṙport(t) [m/sec] generally governs the thrust power of hybrid
rocket engine.

ṙport(t) = 8.26× 10−5 ×G0.55
oxi (t)

= 8.26× 10−5 ×
(

ṁoxi(t)

πr2port(t)

)0.55 (10)

where,Goxi is oxidizer mass flux [kg/(m2 sec)], ṁoxi(t) is
oxidizer flow [kg/sec], andrport(t) describes radius of port
[m].
D(t) is described by using pressure dragDp(t) and friction

dragDf (t) and is respectively estimated by using the flight
data of S-520 as the solid rocket in Japan Aerospace Explo-
ration Agency.

D(t) = Dp(t) +Df (t)

Dp(t) =
1

2
ρV 2SrefC

(S−520)
Dp

Df (t) =
1

2
ρV 2StotCDf

(11)

where,Sref is reference area andStot is total surface area.

C
(S−520)
Dp

= C
(S−520)
D − C

(S−520)
Df

· S
(S−520)
tot

S
(S−520)
ref

C
(S−520)
Df

=
0.455

(log10 Re)2.58
· 1

(1 + 0.144M2)0.655

Re =
V LS−520

tot

ν

M =
V√
γRT

(12)

where,LS−520
tot = 8.715 [m], specific heat ratioγ = 1.4, and

gas constantR = 287 [J/(kg·K)].

CDf
=

0.455

(log10 Re)2.58
· 1

(1 + 0.144M2)0.655

Re =
V Ltot

ν

(13)

Kinematic viscosity coefficientν and atmospheric temperature
T are variables for altitude, referred by International Standard
Atmosphere.

2) Structure Analysis:Initial gross weight is evaluated by
the following equation.

Mtot(0) =
Mprop(0)

0.65
+Mpay

=
1

0.65
(Moxi +Mfuel) +Mpay

Moxi =

∫ tburn

0

ṁoxi(t)dt

Mfuel =

∫ tburn

0

ṁfuel(t)dt

(14)

Constant value of 0.65 means that mass of propellant assumes
65% of gross weight.Mpay describes mass of payload.

D. Applied Results

Evolutions were performed until 100th generation by using
18 population per generation for all of the optimizers because
the nondominated solutions obtained at 100th generation al-
ready converged shown in Fig. 4. Figure 4 indicates that the
present design problem for hybrid rocket is simple because
of the mildness between the objective function and the design
variable. In fact, the nondominated solutions generates Pareto
surface at a small number of generation. Therefore, severe
design variable should be added and redefined the present
design problem not only for the severeness of evaluation tool
but also for the growth of conceptual design of hybrid rocket.
The mass flow of oxidizer should be a design variable as one
of idea. The influence of gust at flight should also considered
as a perturbation.

Figure 5 shows the histories of the number of nondominated
solutions and that of hypervolume. This figure shows that
PSO has a large number of nondominated solutions, but it
has low hypervolume indicator. On the other hand, the hybrid
method between DE and GA does not have a large number



Fig. 4. Comparison of nondominated solutions at several generation for each
optimizer.

Fig. 5. History of hypervolume and number of nondominated solutions for
each optimizer.

of nondominated solutions compared with PSO results, but it
has high hypervolume indicator. That is, the hybrid method
between DE and GA implements the global exploration in
design space and maintains the diversity of nondominated
solutions, whereas PSO carries out the local search and it
has poor diversity. Therefore, the results indicate the high
performance of the hybrid method between DE and GA.

V. CAPABILITY OF CROSSOVER ONHYBRID METHOD

BETWEEN DE AND GA

The capability of the eight crossovers on the hybrid method
between DE and GA. GA with BLX-α and UNDX was used
on the above problem for the comparison among pure and
hybrid methods. As a result, pure DE has better performance
than pure GA. Reference [16] shows the GA with the simplex
crossover(SPX) reaches better performance for convergence

Fig. 6. Histories of convergence metric for each crossover.

Fig. 7. History of cover rate for each crossover. As all data for DTLZ3 and
TNK are zero, their histories were omitted.

Fig. 8. History of hypervolume for each crossover.

Fig. 9. Histories of hypervolume and number of nondominated solutions for
each crossover on hybrid rocket problem.



metric. Therefore, the difference of the capability regarding
crossover will be confirmed. The computational conditions
were similar to the above problem to compare among pure and
hybrid optimizers. The eight crossovers were employed as the
simulated binary crossover(SBX), BLX-α, BLX-α with neigh-
borhood selection method(nBLX), the principal component
analysis BLX-α(PCABLX), UNDX, the confidence interval
based crossover usingL2 norm(CIX), SPX, and the parent-
centric crossover(PCX).

The histories of the convergence metric for each crossover
shown in Fig. 6 indicate that PCABLX is better performance.
PCABLX has the strength for noise. Although the convergence
metric for TNK with noise shows that CIX is good perfor-
mance at early generation, there is no significant difference
among all crossovers. The histories of the cover rate shown
in Fig. 7 indicate the better capability of PCABLX. The
histories of the hypervolume shown in Fig. 8 also indicate
that PCABLX is good performance for the problem without
noise and also CIX is good capability for the problem with
noise. Consequently, PCABLX and CIX are the good selection
for an unknown problem. The history of hypervolume for
the hybrid rocket problem shown in Fig. 9 shows PCABLX
is good performance at early generation, and then CIX is
good capability. When the result of hybrid rocket problem
are observed based on the above those for the test functions,
this problem has week noise. Therefore, this problem is not a
simple, however, is insufficient as a real-world problem. The
several refinements will be implemented in the next step.

VI. CONCLUSIONS

Pure three evolutionary-based optimizers as a differential
evolution, a genetic algorithm, and a particle swarm optimiza-
tion, and their hybrid methods have been compared among
mathematical standard test functions with noise. As a result,
a hybrid method between differential evolution and genetic
algorithm was selected because of the high performance for
convergence metric, cover rate, and hypervolume. The capa-
bility of crossover was also investigated by using eight as the
simulated binary crossover, the blended crossover, the blended
crossover with neighborhood selection method, the principal
component analysis blended crossover, the unimodal normal
distribution crossover, the confidence interval based crossover
usingL2 norm, the simplex crossover, and the parent-centric
crossover. As a result, the principal component analysis
blended crossover and the confidence interval based crossover
had good capability on the hybrid method between differential
evolution and genetic algorithm. Moreover, a real-world hybrid
rocket design problem under the single-stage simple condition
is applied in order to refine the problem definition and also to
evaluate the above optimizers and crossovers. Consequently,
a hybrid method between differential evolution and genetic
algorithm was also good exploration performance in the design
space. The present design problem for hybrid rocket would be
updated as more severe evaluation problem.
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