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Abstract—Optimizer is an essence in design-informatics to functions for which the influence of noise are considered.
efficiently obtain nondominated solutions. In the present study, As a next step, the capability of crossover is investigated for
the best optimizer is decided through the competition for the e same test functions. Their optimization methods are also

mathematical standard test functions and is also applied to a lied to sinale-st imole hvbrid ket desian i der t
conceptual design problem of single-stage simple hybrid rocket applied 1o single-stage simplée hybrid rocket aesign in oraer 1o

as the real-world problem. Consequently, a hybrid method refine the problem definition.
between differential evolution and genetic algorithm has good
exploration performance. Moreover, the principal component Il. OPTIMIZERS
analysis blended crossover and the confidence interval based
crossover have good capability on the hybrid method between A Hybrid Algorithm
differential evolution and genetic algorithm.
Three optimizers, as GA, DE, and PSO, are coupled. First,
multiple solutions are generated randomly as an initial popula-
The results produced by multiobjective (MO) optimizatioion. Then, objective function values are evaluated for each so-
are not an individual optimal solution but rather an entire sgitjon. After the evaluation, the populations is equally divided
of optimal solutions. This set generated by an MO optimizgnto sub-populations for the operations in each optimizer(as
tion can be considered a hypothetical design database. Thefs sub-population size can be decided in every generation,
data mining techniques can be applied to this hypothetigaire GA can be single performed when the sub-populations of
database to acquire not only useful design knowledge but afsg and PSO are zero for example). New solutions generated
structuring and visualizing of design space. This approagly each operation are combined in the next generation. Non-
was suggested as design-informatics[1]. The design problg@mninated solutions in the combined population are archived.
is flrStly defined as ObjeCtive fUnCtionS, ConStraintS, and deSian notable that 0n|y the archive data are shared among the
space. And then, optimization is implemented to obtain noBach optimizer, the respective optimizers are independently
dominated solutions for database construction. The purpose:gfried out in the hybrid algorithm. Therefore, the total number
this approach is the conception support for designers in ordgifseven optimizers were evaluated as pure GA, pure DE, pure
to materialize innovation. This methodology is constructedso, hybrid GA/PSO, hybrid DE/PSO, hybrid GA/DE, and

by the three essences as problem definition, optimizatitfybrid GA/DE/PSO. It is notable that the range adaptation
and information mining. In this study, optimizer for efficien{yas performed at every 20 generations.

exploration in design space is focused because the quality of

hypotheticgl design datgbase depends on th{;\t. The Obje_CtiV‘BPfConfiguration of GA Operators

this study is the evaluation of several evolutionary algorithms . o

and their hybrid methods. Fonseca’s Pareto ranking[6] and crowding distance[7] were

In the present study, the practical engineering applicblsed as the fitness value of each solution. The crowding dis-
tion with large evaluation time is assumed. Therefore, th@nce was defined as the sum of Euclidean distances between
e\/olutionary Optimizer Wh|Ch efﬁciently exp|0res in a Sma"he solution and its two nearest neighbors. AS crossover Opera-
number of generations is needed. Differential evolution hi's, the blended crossover(BLX)-and the unimodal normal
recently better performance than genetic algorithm in M@stribution crossover(UNDX) were used, which equally di-
optimization[2]. Then, the performance of a genetic algorithiyided sub-population.

(GA)[3], a differential evolution (DE)[4], a particle swarm

optimization (PSO)[5](GA and DE have advantage for global [11. EVALUATION USING TEST FUNCTIONS

search while PSO is advantage for local search), and th&ir
hybrid methods is validated to employ practical engineering
applications. Hence, they evaluate under the condition of aSeveral performance measurement manners for evaluating
small number of population and generation. The qualitatithe efficiency of MOEASs were suggested[8]. In this study, the
performance is evaluated for the mathematical standard tEdlowing three metrics were used.

I. INTRODUCTION

Performance Metrics



1) Convergence Metric:The first metric isConvergence 1) DTLZ3: This is a generic sphere problem. The Pareto-
metric 7'[9]. It measures the distance between the obtainegtimal surface always occurs for the minimumgdfc) func-
non-dominated front) and the setP* of Pareto-optimum tion. The number of design variables and objective functions

solutions as follows: set in this paper were 10 and three for DTLZ3.
- LZ d;, 1) Minimize: fi(x) = cos (gm) cos (g:@) (14 g(x))
|Q|i€Q Minimize:  fa(x) = cos (Ex ) sin (zm ) (1+g(x))
-2 571 52 9

where d; denotes the Euclidean distance in the objective- T
function space between the solutione @ and the nearest Minimize:  fs(a) = sin (5962) (1+9(z))
member ofP*. The value near zero means better performancesubject to: g(x) = 100x

2) Cover Rate:The second metric i€over rateR.[10]. R, K )
evaluates the width and closeness of non-dominated solutions |* + {(mk —0.5)" — cos (207 (zy, — 05))}] >0,
compared with Pareto-optimum front. The design space closed k=3
by the objective values from minimum to maximum is taken O<azp<l, k=12, K K=I0 @

discretization. This metric describes the degree that nops Pareto-optimum solution correspondsito= 0.5 (for all

dominated solutions cover discrete region. In this study, two- ) and the objective function values lie inside the first

fthree-dimensional test functions are evaluated. The ObjeCti\é%tant of the unit spher®> _ f,. = 1 in a three-objective
m=1Jm

funct|on. space 1s sgparated _by §quares and cubes. The C?)Y&r. All local Pareto-optimal fronts are parallel to the global

rate R is the following equation: Pareto-optimal front and an MOEA can get stuck at any of

NNDs 5 these local Pareto-optimal fronts, before converging to the
@ global Pareto-optimal front.

2) ZDT1: As a test problem with noise, the following two-

mensional test function was considered:

Minimize: fi(x) =z

R. =
¢ NPareto
where Nyps denotes the number of the cubes included in tf}ﬁ
derived non-dominated solution&p...;, denotes the number

of the cubes intersected by the Pareto front. The maximum
value of R. gives one and the minimum value &, gives Minimize:  fo(z) = g() (1 _ f1(a:)>

)

zero, and then the value near one means better performance. g(x)
3) Hypervolume:The hypervolume indicator (0% metric) 1 XK
is described as the Lebesgue measdreof the union of  subjectto: g(x) =1+9- ﬁZxk,
hypercubesa; defined by a non-dominated point; and a k=2
reference point,e¢[11]: O<zp <1, k=12 K, K= 30~(5)
def The Pareto-optimum front is formed wig{x) = 1. As noise
SM) = A Jailmi e M is appended to this test function, the performance for noise

(3) occurred in practical problems is confirmed.
3) TNK: As a test problem with noise, the following two-
dimensional test function was considered:

Minimize: fi(x) = =1

=A ( U {z|m < & < Zyer}

meM

B. Test Function Minimize: fo(x) = 2o

Three standard test function problems are employed in Subjectto: c¢i(z) = af + 3
order to eyaluate t.he performance of. optimizers gnder .the —1—0.1cos [ 16 arctan “52) >0
consideration of noise described by using normal distribution 1
with random number. The first function is DTLZ3[12] without 1\? 1\ 1
noise using three objective functions and 10 design variables. ca(@) = 21— 5) tlm2—35) =3
The second function is ZDT1[13] with/without noise, which is O<z;, <m, i=1,2.
a simple two-dimensional problem with 10 design variables. (6)

The final function is TNK[14] with noise as a constraint twoThis is a two real-valued variable constrained test problem.
dimensional test function. When an optimizer is applied t8ince the function is simple and the objective-function space
practical problems, experimental and computational values a@responds to the design-variable space, the Pareto front is
employed as those of objective functions. Experiment includdstermined by the constraints. As this function is a minimiza-
error due to the flow quality in wind tunnel. Computatiortion problem, the discontinuous region which is not dominated
(computational fluid dynamicstc) similarly has error due to by the other region in the curve describedyx) = 0. The
mesh and various modelingic That is, as noise is occurredratio which the feasible region accounts is approximately 5%
for the evaluated value under an identical condition, the coaf the whole region. The Pareto front of this test function is
sideration of noise is important to investigate the performanoen-convex surface. Therefore, this test function with noise
of optimizer applicable to practical engineering problem. reveals the performance for intricate practical problems.
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Fig. 1. Histories of convergence metric for each optimizer. Fig. 3. Histories of hypervolume for each optimizer.
| :gg ZDT1 ZDT1 with noise :g:
—iearso
2 =———hGA/PSO . - . .
e iDErso The histories of hypervolume shown in Fig. 3 also reveal
g . hGA/DE .
B ) —aaverso}  that pure DE does not have good performance in the case
15 /“r' 7 | without noise, but has robustness in the case with noise. DE
- ) ) has stable performance. Pure GA has good performance in
f \‘\ the case without noise, however, it is not good and problem
wlll [ J o - . - L dependency in the case with noise. Pure PSO is unstable in
spite of noise and its performance depends on the test prob-
Fig. 2. Histories of cover rate for each optimizer. As all data for DTLZ%er.nS' In the case without n0|se,_ pure_ DE. and the hybr|Q|zat|on
and TNK are zero, their histories were omitted. using DE are better. The hybridization including DE is also

good for the problems with noise due to the restoration of pure
DE performance. Note that there is no meaningful difference

C. Results regarding the results for TNK.
The popu|a‘[ion size and the maximum number of gen- As a reSUIt, a hybrld method between GA and DE will be

erations were respectively set to be 18 and 200. As tRglected to apply to a large-scale engineering design problem
purpose of performance evaluation for several optimizationsi§cause pure DE is robust and stable for noise and pure
to be applied to large-scale and real-world engineering desigh is expected to have latent performance due to complex

problem(for example, it takes one week for one-generati@®erator compared with DE. PSO which does not have the

evaluation), comparatively small values were used. It is ngtrength for noise and the hybrid method with PSO should

table that the average values of 20 runs with different initif¥ot be selected because practical engineering design problem
populations generated randomly were employed for evaluatiggrtainly includes noise.

The histories of convergence metric shown in Fig. 1 reveal
that pure DE and the hybrid methods including DE have
good performance. DE sustains damageless from noise. GAThe conceptual design for a single-stage simple hybrid
does not have much influence from noise. Although purecket[15], which is composed of a thrust chamber, an oxidizer
PSO has poor performance regarding noise, the hybridizatiamk, a nozzle, and a payload, is considered in the present
with DE improve it. The hybridization between GA and DEstudy. This problem is developing and modifying for the
gives the potentiating effect for the performance. Although trevaluation of optimizer applicable to large-scale and real-
hybridization between PSO and the others also gives similsorld design problem. Here, the seven optimizers evaluated
effects, the frailty of pure PSO for noise is bottleneck. by the standard test functions are applied to this hybrid rocket

The histories of cover rate shown in Fig. 2 also reve@roblem, and then the refinement points of it will be confirmed
that pure DE and the hybrid methods including DE haws well as the performance of each optimizer is compared.
robustness for noise. GA does not have good performance.
DE has adamant performance for noise, and also the hybfﬁd
methods including DE maintain similar robustness. Although Two objective functions are defined in this study. One is the
pure PSO is frail for noise, the hybridization including PS@aximization of maximum altitudé7,,., [km] and the other
has compatibility. is the minimization of gross vehicle weight;, (0) [kg]. Note

IV. APPLICATION TOHYBRID ROCKET PROBLEM

Objective Functions



that three other objective functions can be added for this desighere, S, is reference area ansk,; is total surface area.

problem. (S—520)
((5=520) _ ~(8-520) _ ~(8-520) Stot
. . Dy D Dy S(S—520)
B. Design Variables ref
) . ) o o 0(57520) _ 0.455 ) 1
. Six design variables are used as |n|t_|a! mass f_Iow of oxidizer Dy (log,o Re)258 (1 + 0.144012)0-65
oxi(0) [ka/sec], fuel lengthLy,e [m], initial radius of port VS-520
rport (0) [M], combustion timety,,, [sec], initial pressure Re — ——tot
in combustion chambeP,.(0) [MPa], and aperture ratio of VV
nozzlee [-]. M= ——
YRT

. 12)
C. Evaluation Methods
where, L5520 = 8.715 [m], specific heat ratiey = 1.4, and

1) Trajectory Analysis:The following equation of motion gas constank — 287 [J/(kgK)].

described by using thrust'(¢t) [N] and drag D(t) [N] is

computed. = 0.455 1
D = oz RePS ' (14 014402055 a3)
Mot (t) {a(t) — g} = T'(t) — D(t) @ o Vi
v

T(t) is evaluated by using the following equation. Kinematic viscosity coefficient and atmospheric temperature

T are variables for altitude, referred by International Standard
Atmosphere.

2) Structure Analysisinitial gross weight is evaluated by
the following equation.

T(t) = nr {Miprop(t) - te + (Pe — Py) - A} (8

where,nr is total thrust loss coefficieny is momentum loss
coefficient at nozzle exit by frictiom,.o,(t) is mass flow
of propellant,u. is velocity at nozzle exitP, is pressure at Mirop(0)

nozzle exit,P, is pressure of atmosphere at flight altitude, and Mot (0) = 0.65 + Mpay
A, describes area of nozzle exit. 1
7(Moxi + Mfuel) + Mpay

_ , , ~ 0.65
Mprop(t) = —(1Moxi (t) + Miguer(t)) M /tb““’ i (1) dt
oxi — Moxi

mfucl (t) - 2'n—rport (t)quclpfucl Fport (t) (9) 0

. tburn
oort(®) = s (0 + [ e (t)dt Mo = [ st
0

(14)

Figure x shows the definition of shape and symbols. Gonstant value of 0.65 means that mass of propellant assumes
combustion chamber has solid fuel with a single port to suppbp% of gross weightl\f,,,, describes mass of payload.

oxidizer. The regression rate to the radial direction of the fuel .

Tport (t) [M/sec] generally governs the thrust power of hybri@ - Applied Results

rocket engine. Evolutions were performed until 100th generation by using
) 18 population per generation for all of the optimizers because
Fport (t) = 8.26 x 1077 x G435 (1) the nondominated solutions obtained at 100th generation al-

L Toxi (1) 0.55 (10) ready converged shown in Fig. 4. Figure 4 indicates that the
=826 x 1077 x <7T’I“2(t)> present design problem for hybrid rocket is simple because
port of the mildness between the objective function and the design
where, Goy is oxidizer mass flux [kg/(fh Sec)], ity (t) is variable. In fact, the nondominated solu.tions generates Pareto
oxidizer flow [kg/sec], and-o.(t) describes radius of port surf_ace at_a small number of generation. T_herefore, severe
[ml. des!gn variable should be added and redefined the_present
design problem not only for the severeness of evaluation tool
H?ut also for the growth of conceptual design of hybrid rocket.
e mass flow of oxidizer should be a design variable as one
idea. The influence of gust at flight should also considered
as a perturbation.

D(t) is described by using pressure diBg(t) and friction
drag D(t) and is respectively estimated by using the flig
data of S-520 as the solid rocket in Japan Aerospace Exp?— -
ration Agency. 0

D(t) = D,(t) + Dy (t) Figure 5 shows the histories of the number of nondominated
P f ; -

1, (S—520) solutions and that of hypervolume. This figure shows that

Dy(t) = 5PV 5retCp, (11) PSO has a large number of nondominated solutions, but it

1, has low hypervolume indicator. On the other hand, the hybrid
Dy(t) = 5oV "5t Cp; method between DE and GA does not have a large number
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on the above problem for the comparison among pure and : —
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hybrid methods. As a result, pure DE has better performance P o 4"Gm“mf° w
than pure GA. Reference [16] shows the GA with the simplex

crossover(SPX) reaches better performance for convergeRge9. Histories of hypervolume and number of nondominated solutions for
each crossover on hybrid rocket problem.
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