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Abstract— The Data Mining technique is an important facet of solving II. MDO PROBLEM

multi-objective optimization problem. Because it is one of the effective
manner to discover the design knowledge in the multi-objective optimiza-
tion problem which obtains large data. In the present study, two Data In this system, minimization of the block fuel at a required target

mif}ihdg t?CIhniqueS have geité_n _petr_fOFm(el\(/lefgg ? Iarge—%calek, re?"&'\’orld range derived from aerodynamics and structures was selected as

ultidisciplinary Design Optimization o provide knowledge P . e P .

regarding the design space. The MDO among aergdynamics, struct%res, an ObJeCtIYe function. ,m e,lddl,tlon' two morg objective functlpns
and aeroelasticity of the regional-jet wing was carried out using high- Were considered — minimization of the maximum takeoff weight
fidelity evaluation models on Adaptive Range Multi-Objective Genetic and minimization of the difference in the drag coefficient between
Algorithm. As a result, nine non-dominated solutions were generated two Mach numbers, which are cruise Mach and target Maximum

and used for tradeoff analysis among three objectives. All solutions Operating Mach number (MMO), to prevent decrease MMO
evaluated during the evolution were analyzed for the influence of design ' ’

variables using a Self-Organizing Map (SOM) and a functional Analysis B, Geometry Definition

of Variance (ANOVA) to extract key features of the design space. SOM . . . . .

and ANOVA compensated with the respective disadvantages, then the  First, the planform was given by Mitsubishi Heavy Industries, Ltd.
design knowledge could be obtained more clearly by the combination The front and rear spar positions were fixed in the structural shape

between them. Although the MDO results showed the inverted gull- pased on the initial aerodynamic geometry. The wing structural model
wings as non-dominated solutions, one of the key features found by was substituted with shell elements

Data Mining was the non-gull wing geometry. When this knowledge was . . : s . .
applied to one optimum solution, the resulting design was found to have 1€ design variables were related to airfoil, twist, and wing
better performance compared with the original geometry designed in the dihedral. The airfoil was defined at three spanwise cross-sections

conventional manner. using the modified PARSEC[5] with nine design variables,
Zup, Zewups Tlos Zloy Zozyyr OTE, OrE, @NdrLE,, /TLE,,) fOr €ach
I. INTRODUCTION cross-section as shown in Fig. 1. The twists were defined at six
] o ) S ~ spanwise locations, and then wing dihedrals were defined at kink
Recently, the design optimization using high-fidelity evaluatiogng tip locations. The twist center was set on the trailing edge in the
models becomes one of the essential tools for aircraft design. QPesent study. The entire wing shape was thus defined using 35 design
timization problems are concentrated only on finding the optimghriaples. The detail of design variables is summarized in Table I.
solution. Multi-objective optimization obtains only non-dominategh, the present study, the geometry of each individual was generated

solutions. However, it is essential for designers to find the informatiqgy the unstructured dynamic mesh method]6], [7] using displacement
regarding the design space, such as relations between design variapi#s the initial geometry.

and objective functions. The design information directly helps the o

designer to determine the next geometry. The process to find design©OPtimizer

information from huge database, for example optimization results, ARMOGA[8] is an efficient Multi-Objective Evolutionary Algo-

is called Data Mining. This technique is an important facet aithm (MOEA) designed for MDO problems including aerodynamic

solving optimization problem and it has a role of post-process fewaluation with large computation time. ARMOGA can be used

optimization problem[1]. to obtain the non-dominated solutions efficiently because of the
SOM suggested by Kohonen[2] is one of neural network modeloncentrated search of the probable design space, while keeping

SOM can serve as a cluster analyzing tool for high-dimensiondiversity.

data. The cluster analysis of the objective function values will

help to identify design tradeoffs and influence of design variables.

Furthermore, ANOVA[3], which is one of the approximation models,

presents the correlations between objective functions and design

variables. Effective design variables can be identified quantitatively

for objective functions and other characteristic functions. In this

study, the above two Data Mining techniques are applied to a large-

scale, real-world MDO problem for regional jet aircraft[4] in the

field of aeronautics and space engineering, and then knowledge in

the multidisciplinary design space is acquired. SOM and ANOVA Zato

have the disadvantages, respectively. It redeems each disadvanta%e tol

employ these two techniques simultaneously, and then Data Mini@ﬁéigﬁ v

is carried out effectively.

A. Objective Functions

TiEup

=)

lllustration of the modified PARSEC airfoil shape defined by nine
ariables.



TABLE |
DETAIL OF DESIGN VARIABLES.

serial number correspondent design variable
1t09 PARSEC airfoil  35.0% semispan location
(ibupy Zups Bxxypr Llos Rlos Fxwy o OTE, BrE, TLE, /T'LEup)
10 to 18 PARSEC airfoil  55.5% semispan location
19 to 27 PARSEC airfoil  77.5% semispan location

28 to 33 Twist angle 19.3%, 27.2%, 35.0%, 55.5%, 77.5%, 96.0%
34, 35 Dihedral 35.0%, 96.0%
D. Optimization Results relationship between two unitg and &k is usually defined by a

The population size was set to eight, and then roughly 70 Eul(é‘laussmn-llke function

and 90 Reynolds-averaged Navier-Stokes (N-S) computations were d?k
performed in one generation for Computational Fluid Dynamics hjr = exp _TQ) @)
(CFD) evaluation. It took roughly one hour of CPU time for single K

Euler computation, and it also took roughly nine hours for singihered;; denotes the distance between the upigmdk on the map,
N-S computation on NEC SX-5 and SX-7 vector machines pehdr; denotes the neighborhood radius which is set to decrease with
PE. The population was re-initialized every five generations feyach iteratiort.

the range adaptation. First, evolutionary computation was performedqssuming a Euclidean vector space, the two steps of the Batch-
for 17 generations. Then, the evolutionary operation was restartggm algorithm can be formulated as

using eight non-dominated solutions extracted from all solution of

17 generations, and two more generations were computed. A total c; = arg min [|z; — m;|| (2a)
evolutionary computation of 19 generations was carried out. The Zh' x
total of all solutions was 130 individuals and nine non-dominated ) p e

solutions were generated. The evolution may not converge yet. m; = Zih (2b)
However, the results were satisfactory because several non-dominated — e

solutions achieved significant improvements over the initial design. ‘

Furthermore, a sufficient number of solutions were searched such tAgremj is the updated model vector.

the sensitivity of the design space around the initial design could beln contrast to the standard Kohonen algorithm, which makes a

analyzed. This will provide useful information for designers. learning update of the neuron weights after each record being read
and matched, the Batch-SOM takes a ‘batch’ of data, typically all
I1l. DATA MINING records, and performs a ‘collected’ update of the neuron weights

o . after all records have been matched. This is much like ‘epoch’
When the optlmlzatlon problem has _only two objectives, tradeo'féaming in supervised neural networks. The Batch-SOM is a more
can be visualized easily. However, if there are more than gy, ¢ annroach, since it mediates over a large number of learning
objectives, thfe technlqug to ylsuallze the computed all evaluatggpsl Most important, no learning rate is required. The SOMine
and non-dominated solutions is nee_dgd. In the present stgdy, S lementation combines four enhancements to the plain Batch-SOM
f'and ANOVA were employed. Data Mining and knowledge d!scove_ré(lgorithm(See Ref. [10] for more details). In SOMine, the uniqueness
is the new f_|eld to _ex_tract the kr_wowledge from database including”,q map is ensured by the adoption of the Batch-SOM and the
the data which s_tatlstlcal _analy5|s cannot treat. It has the sens§dQ.; initialization for input data.
transform analysis results into the concrete proposal. Much like some other SOMs[11], SOMine creates a map in a two-
dimensional hexagonal grid. Starting from numerical, multivariate
data, the nodes on the grid gradually adapt to the intrinsic shape of the
SOM is not only a technique for visualization but also a tool for theata distribution. Since the order on the grid reflects the neighborhood
intelligent compression of information. That is, SOM can be appliedithin the data, features of the data distribution can be read off from
for data mining to acquire knowledge regarding the design spatiee emerging map on the grid.
In the present study, Viscove@ SOMine[9] (Eudaptics GmbH,  In SOMine, the trained SOM is systematically converted into visual
Austria) was employed. information. The tool provides an extensive built-in capability for
1) Viscovery SOMine:Although SOMine is based on the SOMboth pre-processing and post-processing as well as for the automatic
concept and algorithm, it employs an advanced variant of unsupeelorcoding of the map and its components. SOMine is particularly
vised neural networkg,e. Kohonen’s Batch-SOM. useful in the determination of dependencies between variables as well
The algorithm consists of two steps that are iteratively repeated in the analysis of high-dimensional cluster distributions.
until no more significant changes occur. First the distances betweer2) Cluster Analysis:Once SOM projects input space on a low-
all data items{x;} and the model vector§m;} are computed and dimensional regular grid, the map can be utilized to visualize and
each data itenx; is assigned to the unii; that represents it best. explore properties of the data. When the number of SOM units is
In the second step, each model vector is adapted to betterlditge, to facilitate quantitative analysis of the map and the data,
the data it represents. To ensure that each pmépresents similar similar units need to be groupedge. clustered. The two-stage
data items as its neighbors, the model vecta; is adapted not procedure — first using SOM to produce the prototypes which are
only according to the assigned data items but also with regard tteen clustered in the second stage — was reported to perform well
those assigned to the units in the neighborhood. The neighborhaaten compared to direct clustering of the data[11].

A. Self-Organizing Map



Hierarchical agglomerative algorithm is used for clustering her\j}a '\j?
The algorithm starts with a clustering where each node by itself forr
a cluster. In each step of the algorithm two clusters are merg
those with minimal distance according to a special distance meast
the SOM-Ward distance[9]. This measure takes into account whet
two clusters are adjacent in the map. This means that the proc
of merging clusters is restricted to topologically neighbored cluste
The number of clusters will be different according to the hierarchic -

sequence of clustering. A relatively small number will be chosen fi [ 7] \
visualization, while a large number will be used for generation of )

. . . (a) SOM colored by the block fuel (b) SOM colored by the max takeoff weight
codebook vectors for respective design variables.
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B. Knowledge in the Design Space by SOM

1) Tradeoff Analysis of the Design Spacall of the solutions
have been projected onto the two-dimensional map of SOM. Figure 2
shows the resulting SOM with 11 clusters considering the three
objectives. Furthermore, Fig. 3 shows the SOMs colored by the three
objectives. These color figures show that the SOM indicated in Fig. 2
can be grouped as follows: The upper left corner corresponds to the —
designs with high block fuel and maximum takeoff weight. The left C e ] Mo Higher |
center area corresponds to designs with high maximum takeoff weight (c) SOM colored by the?', divergence
andC'p divergence. The lower left corner corresponds to designs with
low block fuel and highCp divergence. Figure 3(a) and Fig. 3(c)Fig. 3. SOM colored by the objective functions. The symbodenotes the
show that there is a tradeoff between these two objective functiofgSPective extreme non-dominated solutions.

The lower center area corresponds to designs with low block fuel.

The right hand side corresponds to designs with @y divergence.
As the coloring in Fig. 3(a) is similar to that in Fig. 3(b), there wa
not a severe tradeoff between the block fuel and the maximum takeo;
weight. The lower right corner corresponds to designs with low V&llﬂ'—!‘g

of all objectives. Extreme non-dominated solutions are indicated 'ff']d;x' 4 h he SOM colored . |
Fig. 3(a) to (c). As they are in different clusters, the simultaneous igure 4(c) shows the colored Wy/D; lower values are

optimization of the three objectives is impossible. However, the low: hcated_ |n':the;pper left corner. Aithe hlghler V?'”ej Of;ge bIECk fuel
right cluster has relatively low values for all three objectives. Thug """ 9. (a) are present at the same location, ldiydp makes

this region of the design space may provide a sweet spot for tﬂ}? F|°Ck fuel wor:se. Fyrtggrnllore, Z'Qhﬁﬂlj valueslare Io;:art]edblln K
present design problem. the lower area shown in Fig. 4(c). As the lower values of the bloc

2) Effects of Aerodynamic Performance on Objective Functionsf:uel shown in Fig. 3(a) are present at the same area, highér

Figure 4 shows the SOMs colored by the aerodynamic performan\%ﬁs effective to decrease the block fuel. However, higher transonic

under transonic cruising flight condition. Figures 4(a) and (b) sho D values were not necessarily effective to reduce the block fuel in

the SOMs colored by, andCp, respectively. As these figures showﬂ.'gl'1 t4((2)ft')leecs grsne tr;iteg?fli/otﬁ]aengﬂlse Z?gdclﬂ?]z.gg:eﬂs.?] tttllee cor?%li;e
similar coloring, theL /D increase is not so easy. Lowéfp values slggdyp : ing w ' : pres

are located in the lower right corner in Fig. 4(b). As this area clusters __. .
designs with low value of all objectives, this observation suggests thaf 19ure 4(d) shows the SOM colored bi;,. WhenC'a,, increases
Lo - . and C, decreases andl/D is reducedC and Cp increase with
when all objectives are optimized simultaneously, @& under the d . That i d i kes the obiecti
cruising flight condition is also reduced. Furthermore, as the clust jgcreasingCar,. That is, a decrease 10, makes the objective
. . - unction values worse.
of lower values of the maximum takeoff weight shown in Fig. 3(b

. . As the resulting SOMs, colored bg/;, and Cp under subsonic
appears on the right hand side of the mép, can be decreased flight condition, appear similar to transon@; and Cp shown in

Fig. 4(a) and (b), their influences to the objective functions were also
the same. That is, the effects of subsonic aerodynamic performance
on objective functions might be predicted from the effects of transonic

v aerodynamic performance in the present study.

j‘-}ligh - Max Takeoff Weight

- C) divergence

imultaneously with the maximum takeoff weight. As the area with

llgherCD shown in Fig. 4(b) generally coincide with the area with
her objective function value€/ is a very important performance

Low - C,, divergence

3) Additional Characteristics:Figure 5 shows the SOM colored
by three other characteristic values. Figure 5(a) shows the SOM
s—\{/ colored by the constraints of the evaluated fuel mass. The colored
values are defined as follows:

Low— All objectives
LonlBlock F"UI‘J‘} 4 Value = Volumeegquired fuel— VOlUMBuel capacity (3)

Low - Block Fuel

O High-- Cy divergence [y where, Volumequired el denotes the fuel volume required to fly the

) o . ) o ._given range, and Volumg, capacity denotes the fuel capacity volume
E;)%Cg SOM of all solutions in the three-dimensional objective functlorg~Iat can actually be carried in the wing. When this value is greater
than zero, the aircraft cannot fly the given range. As the area with



\:}” worse. In addition, large twist angles at the 55.5% spanwise location
increase objective function 3 &p divergence. However, no design
variable of the PARSEC airfoil had apparent effects on any objective
functions by itself. As shown later, PARSEC design variables have
direct effects on aerodynamic performances. However, the present
objective functions are not pure aerodynamic characteristics. There-
fore, effects of the design variables on the objective functions were
not trivial. There were no design variables and no aerodynamic

EEEREREE T LD o R W characteristics that were effective on the sweet spot with relatively
Lower 0. 08 1 \ghel Luwer Ocounts Higher

(2) SOM colored b)CL (b) SOM colored byC p low values for all three objective functions. Therefore, the individual
that resides in the sweet spot cannot be generated by hand. A

correlation between objective function and design variable is desirable
when the sensitivity of the design variable is to be investigated; this
is one of the important aspects in optimization problems in general.
Next, the effects of design variables on aerodynamic performance
were investigated. From the correspondence between Figs. 4, 6, 7,
and 8, the effects of respective design variables are summarized
in Tables Il to IV. These tables indicate that the design variables
of the PARSEC airfoil have effects on aerodynamic performance

= SRR ) directly.'lt is noted that the effects of design va_triablesag can
(©) SOM colored byL / I‘)g‘er L"(WJ)’ SOM Colgr‘g’ézgycM‘ie‘ be predicted from the above results because Figs. 4(a) and (b) are

) . . similar. Furthermore, the effects of design variable on aerodynamic
Fig. 4. SOM colored by aerodynamic performance under transonic cruisin % £ der th b flight diti b dicted
flight condition. performance under the subsonic flight condition can be predicte

because the SOMs appeared similar at the transonic and subsonic
flight conditions. The leading-edge curvature of PARSEC airfoil at
35.0% spanwise location was effective ig D and C'uyp.
values of over zero corresponds to the area with high maximumThe geometry near the 55.5% spanwise location was not changed
takeoff weight, the aerodynamic characteristics and design values tﬁfg{rkemy with regard to twist angle, as shown in Fig. 8(b). The
have effects on maximum takeoff weight dominate this constraintgeometry near the 96.0% spanwise location was changed to upward

Figure 5(b) shows the SOM colored by the ranking in the optimizefisting. Conversely, the geometry near the 35.0% spanwise location
based on Pareto ranking. As the upper left region has a pooggis changed to downward twisting. The improvement in the vicinity
ranking, larger block fuel and maximum takeoff weight as objectivef the 35.0% spanwise location restrained the shock wave, reducing
functions 1 and 2 dominate the poor ranking. In contrast, the lowgfe wave drag. When the drag decreases, the lift may decrease si-
left area with higherCp divergence does not have poor rankingmultaneously. The lift was increased to compensate for the reduction
These observations indicate that improvementia divergence is in the vicinity of the kink so that the angle of attack of the outboard
not dominated by the specific aerodynamic performance and desiging was increased although the wing is still twisted down. It should
variables, and further improvement cannot be achieved by the presgithoted that the angle of attack near the kink had an effect on the
problem easily. transonic drag, especially as shown in Fig. 8(a). This corresponds

Figure 5(c) shows the SOM colored by the angle between inboatfithe phenomena shown in the CFD visualization. Specifically, the
and outboard on the upper wing surface for the gull-wing at the kirdhock wave in the vicinity of the kink is weakened. The angle of
location. Angles greater and less than 180 deg correspond to gittick near the kink with downward twisting is replaced from the
and inverted gull-wing, respectively. The locations of higher valugsitial geometry and the lost lift is made up to replace the angle
of this angle as shown in Fig. 5(c) correspond to positions of highef attack at the outboard wing with upward twisting so that the
Cp under the transonic cruising flight condition shown in Fig. 4(b)wave drag is reduced near the kink. Upward twisting at the outboard
However, at angles less than 180 deg, there was little correlatigihg has no influence on transonic drag, as shown in Fig. 8(d).
between Fig. 4(b) and Fig. 5(c). The inverted gull-wing did not affeqthis corresponds to the CFD prediction. The other design variables
aerodynamic performance. The inverted gull-wing is known to hawgere not effective to reduce the objective functions or to increase
a structural weight increase, which is also observed in the presaatodynamic performance &p and L/D under transonic cruise
results. Indeed, the locations of higher angles in Fig. 5(c) had highight condition. Data Mining techniques using SOM were found to
maximum takeoff weights as shown in Fig. 3(b). Therefore, non-gulke able to classify the design variables considering their influence on
wings should be designed in future. the objectives and aerodynamic performance.

4) Effects of Design VariablesFinally, Fig. 6 and Fig. 7 show Design knowledge regarding block fuel, which is the most impor-
the SOMs colored by the selected design variables with regaaht element of the present optimization problem, will be considered.
to the PARSEC airfoil parameters at 35.0% and 55.5% spanwiSke following two points are the keys to improve block fuel: 1)
locations, respectively. Moreover, Fig. 8 shows the SOM colored/ D increase, 2)iICp /da increase, at any Mach number. However,
by the design variable, twist angle. The design variables can there were no single design variable in the present design space
summarized as follows, taking into consideration the effects on eacdipable of satisfying them simultaneously. In fact, this was confirmed
objective function and aerodynamic performance. by the SOMs. Although PARSEC design variables correspond to

There are no design variables that show large effects on objectagrodynamic performances, there are no direct effects on other
function 1 as block fuel. The large twist angles at the 35.0% spanwigkjective functions. It would be easier to understand the design
location makes objective function 2 as maximum takeoff weiglspace if the design variables have direct influences on the objective
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values of color bar are set using the minimum and maximum values of e 9-
design variable in optimizer, respectively.

SOM colored by the characteristic design variables involving
wing twist. The minimum and maximum values of color bar are set using
the minimum and maximum values of each design variable in optimizer,
respectively.



TABLE Il
EFFECTS OF DESIGN VARIABLES TQC'7, UNDER TRANSONIC CRUISING
FLIGHT CONDITION.

design variable Cr,
PARSECarr @ 35.0%  decrease increase
PARSECz.p @ 55.5%  increase| increase
PARSECz;, @ 55.5% decrease increase
Twist @ 35.0% increas€e increase
Twist @ 55.5% increase increase

TABLE Il
EFFECTS OF DESIGN VARIABLES TQL/D UNDER TRANSONIC CRUISING
FLIGHT CONDITION.

out of the modelj. The total mean(fioa)) and the variancéss,)
of model are as follows:

ﬂtotalE/"'/?Q(whwm"' , Tpn) dx1dzs - - - day,

&t%)taI:/"'/[Q(ﬂil,$2,"' ,xn)—ﬂtotal]2d1'1dl'2'~~dxn

(8a)

(8b)

The main effect of variable; and the two-way interaction effect of
variablez; andz; are given as follows:

fi (:)
E/.../g(th,--- , &) dzidas - - -

design variable L/D

PARSECrLElO/rLEuP @ 35.0% decrease decrease 9

PARSECz:»,, @ 55.5% increase| decrease dri—1dziy1---do,
TABLE IV — fhotal
EFFECTS OF DESIGN VARIABLES TQC'j7;, UNDER TRANSONIC CRUISING N o
fiij (T3, 25)

FLIGHT CONDITION.
et T = / e / §(z1, 22, ,zn) drrdas - - - dri1dxiyr - (20

decrease decrease
decrease decrease
decrease increase

PARSECarr @ 35.0%
PARSECSrr @ 35.0%
PARSECTLELO/TLEuP @ 35.0%

PARSECz.p @ 55.5% increase| decrease
PARSECz;, @ 55.5% decrease decrease
PARSECz..,, @ 55.5% increase increase

dZL‘jfld$j+1 s d$n

— i (z:) — f15 () — fitotal
i(z;) and fi; 5 (x5, x;) quantify the effect of variable; and interac-
tion effect ofz; andz; on the objective function. The variance due

to the design variable; is obtained as follows:

functions.

%, = [ s ) da (11)

The proportion of the variancéd’ due to design variable:; to

C. Functional Analysis of Variance

total variance of model can be expressed by dividing Eq. (11) with

Analysis of Variance (ANOVA)[3] uses the variance of the obEQ- (8b).

jective functions due to the design variables on the response sur-

face models. Thus, the response surface model should first b€ =
constructed for each objective function to calculate the variance.
The response surface model employed in the present study is the
Kriging model[12]. The Kriging model, developed in the field of

spatial statistics and geostatistics, predicts the distribution value of
the unknown point by using stochastic processes. The Kriging model

/ [ ()] das (12)

/.../[?Q(l‘l,xz,... 7g;n) _ﬂtU‘al}ZdiUldxgu.dxn

is expressed as follows:

This value indicates the effect of design variableon the objective

function[13].
(4) 1) Effects of Design VariablesFigures 9 and 10 show the propor-
) . tion of the influence of design variables on the objective functions and
wherez = {&1, 22, ,z,} denotes the vector of design variablesye o4y namic performance obtained by ANOVA. The influence of the
y is the column vector of sampled response data,faiscinit column - yeiqn variables for each objective function obtained by ANOVA and
vector. R is the correlation matrix whosg, j) element is SOM is summarized in Table V. ANOVA and SOM predicted similar
o n _ g influence for the two objective functions, the maximum takeoff
R (mﬂm]) = exp {—Zek T —:cfc‘ ] weight and Cp divergence. As the design variables correspond
k=1 to aerodynamic performance, these two objective functions have
The correlation vector betweemr and the m sampled data is
expressed as

j(@) =+ 'Ry — Ii)

®)

correlation with aerodynamic performance. However, the block fuel
did not have a correspondent result between ANOVA and SOM. As
the block fuel is computed from the wing structural weight dnd
(6) at subsonic, transonic, and off-design conditions, it is sensitive to
various elements. That is, the present design variables do not have
The valuej: is estimated using the generalized least squares meth@igbet influence on the block fuel. When the influence of design
as P variable is investigated, the correlation is needed between objective
I'R y (7) function and design variable.
I'R™'I Here, the disadvantages of ANOVA and SOM will be investigated.
Once the response surface model is made, the effect of desidre disadvantage of ANOVA is the following. Although it reveals
variables on the objective function can be calculated by decomposthgt “which” design variable influences, it is unclear that “how”
the total variance of model into the variance due to each desitjrat design variable influences. Whereas, the disadvantages of SOM
variable. The decomposition is performed by integrating variablés the following; 1) qualitatively and subjective. 2) it is possible

r'(x) = [R (w,ml) R (m,mz) ;s Rz a™)]

i=



Fig. 9.
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using ANOVA.

to fail finding of the design knowledge due to a large number of
objective functions and design variables. 3) the interaction between
the design variables cannot be investigated directly. ANOVA and
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regarding the design space can be obtained more clearly by the T B0

combination between them such as Data Mining is performed by
SOM after sensitive design variables are addressed by ANOVA.

D. Evaluation of an Improved Geometry

[ others

(d) Influence forCp,

Fig. 10. Proportion of design-variable influence for aerodynamic performance
at the transonic cruising condition using ANOVA.

The design knowledge obtained by Data Mining shows that a non-
gull wing should be designed. Therefore, we modified the optimized

wing shape (called amptimized shown in Fig.11) which achieved ghoy thatoptimizedmod improves both block fuel and maximum
the higher improvement in the block fuel to the non-gull wing shapgyeoff weight. Moreover, by comparison of the polar curves at
(called as optimizedmod) to verify the design knowledge obtained constantC', for cruising conditionC'p of optimizedmodwas found

by the previous Data Mining.

The evaluated results are shown in Figs. 11 to 13. These ﬁgufﬁ?provement of drag, the block fuel eptimized_mod was reduced

COMPARISON OF THE MOST INFLUENTIAL DESIGN VARIABLE FOR THE
OBJECTIVE FUNCTIONS BETWEENANOVA AND SOM.

TABLE V

ANOVA SOM

block fuel Twist @ 77.5% —

max takeoff weight  Twist @ 35.0%  Twist @ 35.0%
C'p divergence Twist @ 55.5%  Twist @ 55.5%

to be reduced by 10.6 counts over the initial geometry. Due to the

by 3.6 percent.

In the present MDO system, surface spline function of the geome-
try deviation was used for the modification of the wing shape (surface
mesh), and then the volume mesh was modified by the unstructured
dynamic mesh method. However, this process made the surface mesh
distorted around the leading edge and highly limited the design space.
This mesh generation process might be the primary reason for the
difficulty in finding the non-gull geometry with better block fuel
performance. The secondary reason is that only the small number of
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the generations has been performed. However, this result reveals

increases the drag divergence. No design variable has direct influence
regarding the block fuel. Detailed observations of SOM revealed that
there is a sweet spot in the design space where the three objectives
become relatively low. Whereas, ANOVA shows that “which” design
variable influences. Here, the result of the influence for the block

fuel by ANOVA does not correspond to on by SOM. As the block
fuel is computed from various variables, the reliability of results

by ANOVA decreases. SOM and ANOVA compensate with the
respective disadvantages, then design knowledge is acquired more
clearly by the combination between them.

Although the present MDO results showed the inverted gull-wings
as non-dominated solutions, one of the key features found by Data
Mining was the non-gull wing geometry. When this knowledge was
applied to one optimum solution, the resulting design was found
to have better performance compared with the original geometry
designed in the conventional manner. The Data Mining technique
provides knowledge regarding the design space and may salvage
lost information during the optimization operation, which will be an
important facet of solving practical optimization problems.
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