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Abstract— The Data Mining technique is an important facet of solving
multi-objective optimization problem. Because it is one of the effective
manner to discover the design knowledge in the multi-objective optimiza-
tion problem which obtains large data. In the present study, two Data
Mining techniques have been performed for a large-scale, real-world
Multidisciplinary Design Optimization (MDO) to provide knowledge
regarding the design space. The MDO among aerodynamics, structures,
and aeroelasticity of the regional-jet wing was carried out using high-
fidelity evaluation models on Adaptive Range Multi-Objective Genetic
Algorithm. As a result, nine non-dominated solutions were generated
and used for tradeoff analysis among three objectives. All solutions
evaluated during the evolution were analyzed for the influence of design
variables using a Self-Organizing Map (SOM) and a functional Analysis
of Variance (ANOVA) to extract key features of the design space. SOM
and ANOVA compensated with the respective disadvantages, then the
design knowledge could be obtained more clearly by the combination
between them. Although the MDO results showed the inverted gull-
wings as non-dominated solutions, one of the key features found by
Data Mining was the non-gull wing geometry. When this knowledge was
applied to one optimum solution, the resulting design was found to have
better performance compared with the original geometry designed in the
conventional manner.

I. I NTRODUCTION

Recently, the design optimization using high-fidelity evaluation
models becomes one of the essential tools for aircraft design. Op-
timization problems are concentrated only on finding the optimal
solution. Multi-objective optimization obtains only non-dominated
solutions. However, it is essential for designers to find the information
regarding the design space, such as relations between design variables
and objective functions. The design information directly helps the
designer to determine the next geometry. The process to find design
information from huge database, for example optimization results,
is called Data Mining. This technique is an important facet of
solving optimization problem and it has a role of post-process for
optimization problem[1].

SOM suggested by Kohonen[2] is one of neural network models.
SOM can serve as a cluster analyzing tool for high-dimensional
data. The cluster analysis of the objective function values will
help to identify design tradeoffs and influence of design variables.
Furthermore, ANOVA[3], which is one of the approximation models,
presents the correlations between objective functions and design
variables. Effective design variables can be identified quantitatively
for objective functions and other characteristic functions. In this
study, the above two Data Mining techniques are applied to a large-
scale, real-world MDO problem for regional jet aircraft[4] in the
field of aeronautics and space engineering, and then knowledge in
the multidisciplinary design space is acquired. SOM and ANOVA
have the disadvantages, respectively. It redeems each disadvantage to
employ these two techniques simultaneously, and then Data Mining
is carried out effectively.

II. MDO PROBLEM

A. Objective Functions

In this system, minimization of the block fuel at a required target
range derived from aerodynamics and structures was selected as
an objective function. In addition, two more objective functions
were considered — minimization of the maximum takeoff weight
and minimization of the difference in the drag coefficient between
two Mach numbers, which are cruise Mach and target Maximum
Operating Mach number (MMO), to prevent decrease MMO.

B. Geometry Definition

First, the planform was given by Mitsubishi Heavy Industries, Ltd.
The front and rear spar positions were fixed in the structural shape
based on the initial aerodynamic geometry. The wing structural model
was substituted with shell elements.

The design variables were related to airfoil, twist, and wing
dihedral. The airfoil was defined at three spanwise cross-sections
using the modified PARSEC[5] with nine design variables (xup,
zup, zxxup , xlo, zlo, zxxlo , αTE , βTE , andrLElo/rLEup ) for each
cross-section as shown in Fig. 1. The twists were defined at six
spanwise locations, and then wing dihedrals were defined at kink
and tip locations. The twist center was set on the trailing edge in the
present study. The entire wing shape was thus defined using 35 design
variables. The detail of design variables is summarized in Table I.
In the present study, the geometry of each individual was generated
by the unstructured dynamic mesh method[6], [7] using displacement
from the initial geometry.

C. Optimizer

ARMOGA[8] is an efficient Multi-Objective Evolutionary Algo-
rithm (MOEA) designed for MDO problems including aerodynamic
evaluation with large computation time. ARMOGA can be used
to obtain the non-dominated solutions efficiently because of the
concentrated search of the probable design space, while keeping
diversity.

Fig. 1. Illustration of the modified PARSEC airfoil shape defined by nine
design variables.



TABLE I
DETAIL OF DESIGN VARIABLES.

serial number correspondent design variable
1 to 9 PARSEC airfoil 35.0% semispan location

(xup, zup, zxxup , xlo, zlo, zxxlo , αTE , βTE , rLElo
/rLEup )

10 to 18 PARSEC airfoil 55.5% semispan location
19 to 27 PARSEC airfoil 77.5% semispan location
28 to 33 Twist angle 19.3%, 27.2%, 35.0%, 55.5%, 77.5%, 96.0%
34, 35 Dihedral 35.0%, 96.0%

D. Optimization Results

The population size was set to eight, and then roughly 70 Euler
and 90 Reynolds-averaged Navier-Stokes (N-S) computations were
performed in one generation for Computational Fluid Dynamics
(CFD) evaluation. It took roughly one hour of CPU time for single
Euler computation, and it also took roughly nine hours for single
N-S computation on NEC SX-5 and SX-7 vector machines per
PE. The population was re-initialized every five generations for
the range adaptation. First, evolutionary computation was performed
for 17 generations. Then, the evolutionary operation was restarted
using eight non-dominated solutions extracted from all solution of
17 generations, and two more generations were computed. A total
evolutionary computation of 19 generations was carried out. The
total of all solutions was 130 individuals and nine non-dominated
solutions were generated. The evolution may not converge yet.
However, the results were satisfactory because several non-dominated
solutions achieved significant improvements over the initial design.
Furthermore, a sufficient number of solutions were searched such that
the sensitivity of the design space around the initial design could be
analyzed. This will provide useful information for designers.

III. D ATA M INING

When the optimization problem has only two objectives, tradeoffs
can be visualized easily. However, if there are more than two
objectives, the technique to visualize the computed all evaluated
and non-dominated solutions is needed. In the present study, SOM
and ANOVA were employed. Data Mining and knowledge discovery
is the new field to extract the knowledge from database including
the data which statistical analysis cannot treat. It has the sense to
transform analysis results into the concrete proposal.

A. Self-Organizing Map

SOM is not only a technique for visualization but also a tool for the
intelligent compression of information. That is, SOM can be applied
for data mining to acquire knowledge regarding the design space.
In the present study, ViscoveryR© SOMine[9] (Eudaptics GmbH,
Austria) was employed.

1) Viscovery SOMine:Although SOMine is based on the SOM
concept and algorithm, it employs an advanced variant of unsuper-
vised neural networks,i.e. Kohonen’s Batch-SOM.

The algorithm consists of two steps that are iteratively repeated
until no more significant changes occur. First the distances between
all data items{xi} and the model vectors{mj} are computed and
each data itemxi is assigned to the unitci that represents it best.

In the second step, each model vector is adapted to better fit
the data it represents. To ensure that each unitj represents similar
data items as its neighbors, the model vectormj is adapted not
only according to the assigned data items but also with regard to
those assigned to the units in the neighborhood. The neighborhood

relationship between two unitsj and k is usually defined by a
Gaussian-like function
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wheredjk denotes the distance between the unitsj andk on the map,
andrt denotes the neighborhood radius which is set to decrease with
each iterationt.

Assuming a Euclidean vector space, the two steps of the Batch-
SOM algorithm can be formulated as

ci = arg min ‖xi − mj‖ (2a)

m∗
j =

X

i

hjci xi

X

i

hjci

(2b)

wherem∗
j is the updated model vector.

In contrast to the standard Kohonen algorithm, which makes a
learning update of the neuron weights after each record being read
and matched, the Batch-SOM takes a ‘batch’ of data, typically all
records, and performs a ‘collected’ update of the neuron weights
after all records have been matched. This is much like ‘epoch’
learning in supervised neural networks. The Batch-SOM is a more
robust approach, since it mediates over a large number of learning
steps. Most important, no learning rate is required. The SOMine
implementation combines four enhancements to the plain Batch-SOM
algorithm(See Ref. [10] for more details). In SOMine, the uniqueness
of the map is ensured by the adoption of the Batch-SOM and the
linear initialization for input data.

Much like some other SOMs[11], SOMine creates a map in a two-
dimensional hexagonal grid. Starting from numerical, multivariate
data, the nodes on the grid gradually adapt to the intrinsic shape of the
data distribution. Since the order on the grid reflects the neighborhood
within the data, features of the data distribution can be read off from
the emerging map on the grid.

In SOMine, the trained SOM is systematically converted into visual
information. The tool provides an extensive built-in capability for
both pre-processing and post-processing as well as for the automatic
colorcoding of the map and its components. SOMine is particularly
useful in the determination of dependencies between variables as well
as in the analysis of high-dimensional cluster distributions.

2) Cluster Analysis:Once SOM projects input space on a low-
dimensional regular grid, the map can be utilized to visualize and
explore properties of the data. When the number of SOM units is
large, to facilitate quantitative analysis of the map and the data,
similar units need to be grouped,i.e., clustered. The two-stage
procedure — first using SOM to produce the prototypes which are
then clustered in the second stage — was reported to perform well
when compared to direct clustering of the data[11].



Hierarchical agglomerative algorithm is used for clustering here.
The algorithm starts with a clustering where each node by itself forms
a cluster. In each step of the algorithm two clusters are merged:
those with minimal distance according to a special distance measure,
the SOM-Ward distance[9]. This measure takes into account whether
two clusters are adjacent in the map. This means that the process
of merging clusters is restricted to topologically neighbored clusters.
The number of clusters will be different according to the hierarchical
sequence of clustering. A relatively small number will be chosen for
visualization, while a large number will be used for generation of
codebook vectors for respective design variables.

B. Knowledge in the Design Space by SOM

1) Tradeoff Analysis of the Design Space:All of the solutions
have been projected onto the two-dimensional map of SOM. Figure 2
shows the resulting SOM with 11 clusters considering the three
objectives. Furthermore, Fig. 3 shows the SOMs colored by the three
objectives. These color figures show that the SOM indicated in Fig. 2
can be grouped as follows: The upper left corner corresponds to the
designs with high block fuel and maximum takeoff weight. The left
center area corresponds to designs with high maximum takeoff weight
andCD divergence. The lower left corner corresponds to designs with
low block fuel and highCD divergence. Figure 3(a) and Fig. 3(c)
show that there is a tradeoff between these two objective functions.
The lower center area corresponds to designs with low block fuel.
The right hand side corresponds to designs with lowCD divergence.
As the coloring in Fig. 3(a) is similar to that in Fig. 3(b), there was
not a severe tradeoff between the block fuel and the maximum takeoff
weight. The lower right corner corresponds to designs with low value
of all objectives. Extreme non-dominated solutions are indicated in
Fig. 3(a) to (c). As they are in different clusters, the simultaneous
optimization of the three objectives is impossible. However, the lower
right cluster has relatively low values for all three objectives. Thus,
this region of the design space may provide a sweet spot for the
present design problem.

2) Effects of Aerodynamic Performance on Objective Functions:
Figure 4 shows the SOMs colored by the aerodynamic performance
under transonic cruising flight condition. Figures 4(a) and (b) show
the SOMs colored byCL andCD, respectively. As these figures show
similar coloring, theL/D increase is not so easy. LowerCD values
are located in the lower right corner in Fig. 4(b). As this area clusters
designs with low value of all objectives, this observation suggests that
when all objectives are optimized simultaneously, theCD under the
cruising flight condition is also reduced. Furthermore, as the clusters
of lower values of the maximum takeoff weight shown in Fig. 3(b)
appears on the right hand side of the map,CD can be decreased

Fig. 2. SOM of all solutions in the three-dimensional objective function
space.

(a) SOM colored by the block fuel (b) SOM colored by the max takeoff weight

(c) SOM colored by theCD divergence

Fig. 3. SOM colored by the objective functions. The symbolˆ denotes the
respective extreme non-dominated solutions.

simultaneously with the maximum takeoff weight. As the area with
higherCD shown in Fig. 4(b) generally coincide with the area with
higher objective function values,CD is a very important performance
index.

Figure 4(c) shows the SOM colored byL/D; lower values are
located in the upper left corner. As the higher values of the block fuel
shown in Fig. 3(a) are present at the same location, lowerL/D makes
the block fuel worse. Furthermore, higherL/D values are located in
the lower area shown in Fig. 4(c). As the lower values of the block
fuel shown in Fig. 3(a) are present at the same area, higherL/D
was effective to decrease the block fuel. However, higher transonic
L/D values were not necessarily effective to reduce the block fuel in
Fig. 4(c) because not only the cruise condition but also the complete
flight profile from takeoff to landing were considered in the present
study.

Figure 4(d) shows the SOM colored byCMp. WhenCMp increases
and CL decreases andL/D is reduced.CL and CD increase with
decreasingCMp. That is, a decrease inCMp makes the objective
function values worse.

As the resulting SOMs, colored byCL and CD under subsonic
flight condition, appear similar to transonicCL and CD shown in
Fig. 4(a) and (b), their influences to the objective functions were also
the same. That is, the effects of subsonic aerodynamic performance
on objective functions might be predicted from the effects of transonic
aerodynamic performance in the present study.

3) Additional Characteristics:Figure 5 shows the SOM colored
by three other characteristic values. Figure 5(a) shows the SOM
colored by the constraints of the evaluated fuel mass. The colored
values are defined as follows:

V alue = Volumerequired fuel− Volumefuel capacity (3)

where, Volumerequired fuel denotes the fuel volume required to fly the
given range, and Volumefuel capacity denotes the fuel capacity volume
that can actually be carried in the wing. When this value is greater
than zero, the aircraft cannot fly the given range. As the area with



(a) SOM colored byCL (b) SOM colored byCD

(c) SOM colored byL/D (d) SOM colored byCMp

Fig. 4. SOM colored by aerodynamic performance under transonic cruising
flight condition.

values of over zero corresponds to the area with high maximum
takeoff weight, the aerodynamic characteristics and design values that
have effects on maximum takeoff weight dominate this constraint.

Figure 5(b) shows the SOM colored by the ranking in the optimizer
based on Pareto ranking. As the upper left region has a poorer
ranking, larger block fuel and maximum takeoff weight as objective
functions 1 and 2 dominate the poor ranking. In contrast, the lower
left area with higherCD divergence does not have poor ranking.
These observations indicate that improvement inCD divergence is
not dominated by the specific aerodynamic performance and design
variables, and further improvement cannot be achieved by the present
problem easily.

Figure 5(c) shows the SOM colored by the angle between inboard
and outboard on the upper wing surface for the gull-wing at the kink
location. Angles greater and less than 180 deg correspond to gull
and inverted gull-wing, respectively. The locations of higher values
of this angle as shown in Fig. 5(c) correspond to positions of higher
CD under the transonic cruising flight condition shown in Fig. 4(b).
However, at angles less than 180 deg, there was little correlation
between Fig. 4(b) and Fig. 5(c). The inverted gull-wing did not affect
aerodynamic performance. The inverted gull-wing is known to have
a structural weight increase, which is also observed in the present
results. Indeed, the locations of higher angles in Fig. 5(c) had higher
maximum takeoff weights as shown in Fig. 3(b). Therefore, non-gull
wings should be designed in future.

4) Effects of Design Variables:Finally, Fig. 6 and Fig. 7 show
the SOMs colored by the selected design variables with regard
to the PARSEC airfoil parameters at 35.0% and 55.5% spanwise
locations, respectively. Moreover, Fig. 8 shows the SOM colored
by the design variable, twist angle. The design variables can be
summarized as follows, taking into consideration the effects on each
objective function and aerodynamic performance.

There are no design variables that show large effects on objective
function 1 as block fuel. The large twist angles at the 35.0% spanwise
location makes objective function 2 as maximum takeoff weight

worse. In addition, large twist angles at the 55.5% spanwise location
increase objective function 3 asCD divergence. However, no design
variable of the PARSEC airfoil had apparent effects on any objective
functions by itself. As shown later, PARSEC design variables have
direct effects on aerodynamic performances. However, the present
objective functions are not pure aerodynamic characteristics. There-
fore, effects of the design variables on the objective functions were
not trivial. There were no design variables and no aerodynamic
characteristics that were effective on the sweet spot with relatively
low values for all three objective functions. Therefore, the individual
that resides in the sweet spot cannot be generated by hand. A
correlation between objective function and design variable is desirable
when the sensitivity of the design variable is to be investigated; this
is one of the important aspects in optimization problems in general.

Next, the effects of design variables on aerodynamic performance
were investigated. From the correspondence between Figs. 4, 6, 7,
and 8, the effects of respective design variables are summarized
in Tables II to IV. These tables indicate that the design variables
of the PARSEC airfoil have effects on aerodynamic performance
directly. It is noted that the effects of design variables toCD can
be predicted from the above results because Figs. 4(a) and (b) are
similar. Furthermore, the effects of design variable on aerodynamic
performance under the subsonic flight condition can be predicted
because the SOMs appeared similar at the transonic and subsonic
flight conditions. The leading-edge curvature of PARSEC airfoil at
35.0% spanwise location was effective toL/D andCMp.

The geometry near the 55.5% spanwise location was not changed
markedly with regard to twist angle, as shown in Fig. 8(b). The
geometry near the 96.0% spanwise location was changed to upward
twisting. Conversely, the geometry near the 35.0% spanwise location
was changed to downward twisting. The improvement in the vicinity
of the 35.0% spanwise location restrained the shock wave, reducing
the wave drag. When the drag decreases, the lift may decrease si-
multaneously. The lift was increased to compensate for the reduction
in the vicinity of the kink so that the angle of attack of the outboard
wing was increased although the wing is still twisted down. It should
be noted that the angle of attack near the kink had an effect on the
transonic drag, especially as shown in Fig. 8(a). This corresponds
to the phenomena shown in the CFD visualization. Specifically, the
shock wave in the vicinity of the kink is weakened. The angle of
attack near the kink with downward twisting is replaced from the
initial geometry and the lost lift is made up to replace the angle
of attack at the outboard wing with upward twisting so that the
wave drag is reduced near the kink. Upward twisting at the outboard
wing has no influence on transonic drag, as shown in Fig. 8(d).
This corresponds to the CFD prediction. The other design variables
were not effective to reduce the objective functions or to increase
aerodynamic performance asCD and L/D under transonic cruise
flight condition. Data Mining techniques using SOM were found to
be able to classify the design variables considering their influence on
the objectives and aerodynamic performance.

Design knowledge regarding block fuel, which is the most impor-
tant element of the present optimization problem, will be considered.
The following two points are the keys to improve block fuel: 1)
L/D increase, 2)dCD/dα increase, at any Mach number. However,
there were no single design variable in the present design space
capable of satisfying them simultaneously. In fact, this was confirmed
by the SOMs. Although PARSEC design variables correspond to
aerodynamic performances, there are no direct effects on other
objective functions. It would be easier to understand the design
space if the design variables have direct influences on the objective



(a) SOM colored by the constraint as wing

box volume

(b) SOM colored by the ranking in the

optimizer

(c) SOM colored by the angle on upper surface expressing the gull-wing at kink location

Fig. 5. SOM colored by the characteristic values.

(a) SOM colored by PARSECαT E (b) SOM colored by PARSECβT E

(c) SOM colored by PARSECrLElo
/rLEup

Fig. 6. SOM colored by characteristic design variables regarding the
PARSEC airfoil at 35.0% spanwise location. The minimum and maximum
values of color bar are set using the minimum and maximum values of each
design variable in optimizer, respectively.

(a) SOM colored by PARSECxup (b) SOM colored by PARSECxlo

(c) SOM colored by PARSECzxxlo

Fig. 7. SOM colored by the characteristic design variables regarding the
PARSEC airfoil at 55.5% spanwise location. The minimum and maximum
values of color bar are set using the minimum and maximum values of each
design variable in optimizer, respectively.

(a) SOM colored by the twist angle at

35.0% spanwise location

(b) SOM colored by the twist angle at

55.5% spanwise location

(c) SOM colored by the twist angle at

77.5% spanwise location

(d) SOM colored by the twist angle at

96.0% spanwise location

Fig. 8. SOM colored by the characteristic design variables involving
wing twist. The minimum and maximum values of color bar are set using
the minimum and maximum values of each design variable in optimizer,
respectively.



TABLE II
EFFECTS OF DESIGN VARIABLES TOCL UNDER TRANSONIC CRUISING

FLIGHT CONDITION.

design variable CL

PARSECαTE @ 35.0% decrease increase
PARSECxup @ 55.5% increase increase
PARSECxlo @ 55.5% decrease increase

Twist @ 35.0% increase increase
Twist @ 55.5% increase increase

TABLE III
EFFECTS OF DESIGN VARIABLES TOL/D UNDER TRANSONIC CRUISING

FLIGHT CONDITION.

design variable L/D
PARSECrLElo

/rLEup @ 35.0% decrease decrease
PARSECzxxlo @ 55.5% increase decrease

TABLE IV
EFFECTS OF DESIGN VARIABLES TOCMp UNDER TRANSONIC CRUISING

FLIGHT CONDITION.

design variable CMp

PARSECαTE @ 35.0% decrease decrease
PARSECβTE @ 35.0% decrease decrease

PARSECrLElo
/rLEup @ 35.0% decrease increase

PARSECxup @ 55.5% increase decrease
PARSECxlo @ 55.5% decrease decrease

PARSECzxxlo @ 55.5% increase increase

functions.

C. Functional Analysis of Variance

Analysis of Variance (ANOVA)[3] uses the variance of the ob-
jective functions due to the design variables on the response sur-
face models. Thus, the response surface model should first be
constructed for each objective function to calculate the variance.
The response surface model employed in the present study is the
Kriging model[12]. The Kriging model, developed in the field of
spatial statistics and geostatistics, predicts the distribution value of
the unknown point by using stochastic processes. The Kriging model
is expressed as follows:

ŷ(x) = µ̂ + r′R−1(y − Iµ̂) (4)

wherex = {x1, x2, · · · , xn} denotes the vector of design variables,
y is the column vector of sampled response data, andI is unit column
vector.R is the correlation matrix whose(i, j) element is
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The correlation vector betweenx and the m sampled data is
expressed as

r′(x) =
ˆ

R
`

x, x1´ , R
`

x, x2´ , · · · , R (x, xm)
˜

(6)

The valueµ̂ is estimated using the generalized least squares method
as

µ̂ =
I ′R−1y

I ′R−1I
(7)

Once the response surface model is made, the effect of design
variables on the objective function can be calculated by decomposing
the total variance of model into the variance due to each design
variable. The decomposition is performed by integrating variables

out of the model̂y. The total mean(µ̂total) and the variance(σ̂2
total)

of model are as follows:

µ̂total ≡
Z

· · ·
Z
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σ̂2
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(8b)

The main effect of variablexi and the two-way interaction effect of
variablexi andxj are given as follows:

µ̂ (xi)

≡
Z

· · ·
Z
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≡
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− µ̂i (xi) − µ̂j (xj) − µ̂total

(10)

µ̂(xi) andµ̂i,j(xi, xj) quantify the effect of variablexi and interac-
tion effect ofxi andxj on the objective function. The variance due
to the design variablexi is obtained as follows:

σ̂2
xi

=

Z

[µ̂i (xi)]
2 dxi (11)

The proportion of the varianceP due to design variablexi to
total variance of model can be expressed by dividing Eq. (11) with
Eq. (8b).

P =
σ̂2
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σ̂2
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[µ̂i (xi)]
2 dxi
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· · ·
Z
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(12)

This value indicates the effect of design variablexi on the objective
function[13].

1) Effects of Design Variables:Figures 9 and 10 show the propor-
tion of the influence of design variables on the objective functions and
aerodynamic performance obtained by ANOVA. The influence of the
design variables for each objective function obtained by ANOVA and
SOM is summarized in Table V. ANOVA and SOM predicted similar
influence for the two objective functions, the maximum takeoff
weight and CD divergence. As the design variables correspond
to aerodynamic performance, these two objective functions have
correlation with aerodynamic performance. However, the block fuel
did not have a correspondent result between ANOVA and SOM. As
the block fuel is computed from the wing structural weight andL/D
at subsonic, transonic, and off-design conditions, it is sensitive to
various elements. That is, the present design variables do not have
direct influence on the block fuel. When the influence of design
variable is investigated, the correlation is needed between objective
function and design variable.

Here, the disadvantages of ANOVA and SOM will be investigated.
The disadvantage of ANOVA is the following. Although it reveals
that “which” design variable influences, it is unclear that “how”
that design variable influences. Whereas, the disadvantages of SOM
is the following; 1) qualitatively and subjective. 2) it is possible



(a) Influence for block fuel

(b) Influence for maximum takeoff weight

(c) Influence forCD divergence

Fig. 9. Proportion of design-variable influence for the objective functions
using ANOVA.

to fail finding of the design knowledge due to a large number of
objective functions and design variables. 3) the interaction between
the design variables cannot be investigated directly. ANOVA and
SOM compensate with the respective disadvantages, then knowledge
regarding the design space can be obtained more clearly by the
combination between them such as Data Mining is performed by
SOM after sensitive design variables are addressed by ANOVA.

D. Evaluation of an Improved Geometry

The design knowledge obtained by Data Mining shows that a non-
gull wing should be designed. Therefore, we modified the optimized
wing shape (called as ‘optimized’ shown in Fig.11) which achieved
the higher improvement in the block fuel to the non-gull wing shape
(called as ‘optimizedmod’) to verify the design knowledge obtained
by the previous Data Mining.

The evaluated results are shown in Figs. 11 to 13. These figures

TABLE V
COMPARISON OF THE MOST INFLUENTIAL DESIGN VARIABLE FOR THE

OBJECTIVE FUNCTIONS BETWEENANOVA AND SOM.

ANOVA SOM
block fuel Twist @ 77.5% —

max takeoff weight Twist @ 35.0% Twist @ 35.0%
CD divergence Twist @ 55.5% Twist @ 55.5%

(a) Influence forCL

(b) Influence forCD

(c) Influence forL/D

(d) Influence forCMp

Fig. 10. Proportion of design-variable influence for aerodynamic performance
at the transonic cruising condition using ANOVA.

show thatoptimizedmod improves both block fuel and maximum
takeoff weight. Moreover, by comparison of the polar curves at
constantCL for cruising condition,CD of optimizedmodwas found
to be reduced by 10.6 counts over the initial geometry. Due to the
improvement of drag, the block fuel ofoptimized mod was reduced
by 3.6 percent.

In the present MDO system, surface spline function of the geome-
try deviation was used for the modification of the wing shape (surface
mesh), and then the volume mesh was modified by the unstructured
dynamic mesh method. However, this process made the surface mesh
distorted around the leading edge and highly limited the design space.
This mesh generation process might be the primary reason for the
difficulty in finding the non-gull geometry with better block fuel
performance. The secondary reason is that only the small number of



Fig. 11. Comparison ofoptimizedmodand all solutions on two-dimensional
plane between block fuel andCD divergence.

Fig. 12. Comparison ofoptimizedmodand all solutions on two-dimensional
plane between block fuel and maximum takeoff weight.

Fig. 13. Comparison ofoptimizedmodand all solutions on two-dimensional
plane between maximum takeoff weight andCD divergence.

the generations has been performed. However, this result reveals that
Data Mining technique salvages the information. It is demonstrated
that the knowledge discovery by Data Mining regarding design space
is an important aspect in the practical optimization.

IV. CONCLUSION

Data Mining for the design space was performed using a SOM and
an ANOVA for a large-scale, real-world MDO problem to provide the
design knowledge. As a result, SOM reveals that “which” and “how”
design variable influences the objective functions and aerodynamic
performances. The higher value of 35% twist angle increases the
maximum takeoff weight. The higher value of 55.5% twist angle

increases the drag divergence. No design variable has direct influence
regarding the block fuel. Detailed observations of SOM revealed that
there is a sweet spot in the design space where the three objectives
become relatively low. Whereas, ANOVA shows that “which” design
variable influences. Here, the result of the influence for the block
fuel by ANOVA does not correspond to on by SOM. As the block
fuel is computed from various variables, the reliability of results
by ANOVA decreases. SOM and ANOVA compensate with the
respective disadvantages, then design knowledge is acquired more
clearly by the combination between them.

Although the present MDO results showed the inverted gull-wings
as non-dominated solutions, one of the key features found by Data
Mining was the non-gull wing geometry. When this knowledge was
applied to one optimum solution, the resulting design was found
to have better performance compared with the original geometry
designed in the conventional manner. The Data Mining technique
provides knowledge regarding the design space and may salvage
lost information during the optimization operation, which will be an
important facet of solving practical optimization problems.
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