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Abstract—Design-Informatics has three points of view. One
of these points is the investigation of efficient optimization
to generate hypothetical database for a large-scale design
problem. The results of the present study indicates the hybrid
method between differential evolution and genetic algorithm
is better performance for efficient exploration in design space
under the condition for large-scale engineering design problem
within 102 order evolution at most.
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I. I NTRODUCTION

The results produced by multi-objective (MO) optimiza-
tion are not an individual optimal solution but rather an en-
tire set of optimal solutions. This set generated by an MO op-
timization can be considered a hypothetical design database.
Then, data mining techniques can be applied to this hypo-
thetical database to acquire not only useful design knowl-
edge but also structuring and visualizing of design space.
This approach was suggested as design-informatics[1]. The
design problem is firstly defined as objective functions,
constraints, and design space. And then, optimization is
implemented to obtain non-dominated solutions for database
construction. The purpose of this approach is the conception
support for designers in order to materialize innovation.
This methodology is constructed by the three essences as
problem definition, optimization, and information mining.
In this study, optimizer for efficient exploration in design
space is focused because the quality of hypothetical design
database depends on that. The objective of this study is
the evaluation of several evolutionary algorithms and their
hybrid methods.

In this study, the practical engineering application with
large evaluation time is assumed. Therefore, the evolutionary
optimizer which efficiently explores in a small number
of generations is needed. Differential evolution has re-
cently better performance than genetic algorithm in MO
optimization[2]. Then, the performance of genetic algorithm
(GA)[3], differential evolution (DE)[4], particle swarm op-
timization (PSO)[5](GA and DE have advantage for global
search while PSO is advantage for local search), and their
hybrid methods is validated to employ practical engineering
applications. Hence, they evaluate under the condition of a

small number of population and generation. The qualitative
performance is evaluated for the mathematical test functions
for which the influence of noise are considered.

II. OPTIMIZERS

A. Hybrid Algorithm

Three optimizers, as GA, DE, and PSO, are coupled.
First, multiple solutions are generated randomly as an initial
population. Then, objective function values are evaluated
for each solution. After the evaluation, the populations is
equally divided into sub-populations for the operations in
each optimizer(as this sub-population size can be decided
in every generation, pure GA can be single performed
when the sub-populations of DE and PSO are zero for
example). New solutions generated by each operation are
combined in the next generation. Non-dominated solutions
in the combined population are archived. It is notable that
only the archive data are shared among the each optimizer,
the respective optimizers are independently carried out in
the hybrid algorithm. Therefore, the total number of seven
optimizers were evaluated as pure GA, pure DE, pure PSO,
hybrid GA/PSO, hybrid DE/PSO, hybrid GA/DE, and hybrid
GA/DE/PSO.

B. Configuration of GA Operators

Fonseca’s Pareto ranking[6] and crowding distance[7]
were used as the fitness value of each solution. The crowding
distance was defined as the sum of Euclidean distances
between the solution and its two nearest neighbors. As
crossover operators, BLX-α[8] and UNDX[9] were used,
which equally divided sub-population.

III. PROBLEM DEFINITION

A. Performance Metrics

Several performance measurement manners for evaluating
the efficiency of MOEAs were suggested[10]. In this study,
the following three metrics were used.

1) Convergence Metric:The first metric isConvergence
metricΥ [11]. It measures the distance between the obtained
non-dominated frontQ and the setP ∗ of Pareto-optimum
solutions as follows:

Υ =
1

|Q|
∑
i∈Q

di, (1)



where di denotes the Euclidean distance in the objective-
function space between the solutioni ∈ Q and the nearest
member ofP ∗. The value near zero means better perfor-
mance.

2) Cover Rate:The second metric isCover rateRc[12].
Rc evaluates the width and closeness of non-dominated
solutions compared with Pareto-optimum front. The design
space closed by the objective values from minimum to maxi-
mum is taken discretization. This metric describes the degree
that non-dominated solutions cover discrete region. In this
study, two-/three-dimensional test functions are evaluated.
The objective-function space is separated by squares and
cubes. The cover rateRc is the following equation:

Rc =
NNDS

NPareto
, (2)

whereNNDS denotes the number of the cubes included in
the derived non-dominated solutions.NPareto denotes the
number of the cubes intersected by the Pareto front. The
maximum value ofRc gives one and the minimum value
of Rc gives zero, and then the value near one means better
performance.

3) Hypervolume:The hypervolume indicator (orS met-
ric) is described as the Lebesgue measureΛ of the union of
hypercubesai defined by a non-dominated pointmi and a
reference pointxref [13]:

S(M)
def≡ Λ

({∪
i

ai|mi ∈ M

})

= Λ

( ∪
m∈M

{x|m ≺ x ≺ xref}

) (3)

B. Test Function

Three standard test function problems are employed in
order to evaluate the performance of optimizers under the
consideration of noise described by using normal distribution
with random number. The first function is DTLZ3[14]
without noise using three objective functions and 10 design
variables. The second function is ZDT1[15] with/without
noise, which is a simple two-dimensional problem with 10
design variables. The final function is TNK[16] with noise
as a constraint two-dimensional test function. It is notable
that noise is describled by using normal distribution with
random number. When an optimizer is applied to practical
problems, experimental and computational values are em-
ployed as those of objective functions. Experiment includes
error due to the flow quality in wind tunnel. Computation
(computational fluid dynamicsetc.) similarly has error due
to mesh and various modelingetc. That is, as noise is
occurred for the evaluated value under an identical condition,
the consideration of noise is important to investigate the
performance of optimizer applicable to practical engineering
problem.

1) DTLZ3: This is a generic sphere problem. The Pareto-
optimal surface always occurs for the minimum ofg(x)
function. The number of design variables and objective
functions set in this paper were 10 and three for DTLZ3.

Minimize: f1(x) = cos
(π
2
x1

)
cos
(π
2
x2

)
(1 + g(x))

Minimize: f2(x) = cos
(π
2
x1

)
sin
(π
2
x2

)
(1 + g(x))

Minimize: f3(x) = sin
(π
2
x2

)
(1 + g(x))

subject to: g(x) = 100×[
k +

K∑
k=3

{
(xk − 0.5)

2 − cos (20π (xk − 0.5))
}]

≥ 0,

0 ≤ xk ≤ 1, k = 1, 2, · · · ,K, K = 10.
(4)

The Pareto-optimum solution corresponds toxi = 0.5 (for
all xi ∈ x) and the objective function values lie inside the
first octant of the unit sphere

∑3
m=1 fm = 1 in a three-

objective plot. All local Pareto-optimal fronts are parallel to
the global Pareto-optimal front and an MOEA can get stuck
at any of these local Pareto-optimal fronts, before converging
to the global Pareto-optimal front.

2) ZDT1: As a test problem with noise, the following
two-dimensional test function was considered:

Minimize: f1(x) = x1

Minimize: f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)

subject to: g(x) = 1 + 9 · 1

K − 1

K∑
k=2

xk,

0 ≤ xk ≤ 1, k = 1, 2, · · · ,K, K = 30.
(5)

The Pareto-optimum front is formed withg(x) = 1. As
noise is appended to this test function, the performance for
noise occurred in practical problems is confirmed.

3) TNK: As a test problem with noise, the following two-
dimensional test function was considered:

Minimize: f1(x) = x1

Minimize: f2(x) = x2

subject to: c1(x) = x2
1 + x2

2

−1− 0.1 cos

(
16 arctan

x2

x1

)
≥ 0

c2(x) =

(
x1 −

1

2

)2

+

(
x2 −

1

2

)2

≤ 1

2
0 < xi ≤ π, i = 1, 2.

(6)
This is a two real-valued variable constrained test problem.
Since the function is simple and the objective-function space
corresponds to the design-variable space, the Pareto front
is determined by the constraints. As this function is a
minimization problem, the discontinuous region which is
not dominated by the other region in the curve described
by c1(x) = 0. The ratio which the feasible region accounts



Figure 1. Histories of convergence metric for each test function.

Figure 2. History of cover rate for each test function. As all data for
DTLZ3 and TNK are zero, their histories were omitted.

is approximately 5% of the whole region. The Pareto front
of this test function is non-convex surface. Therefore, this
test function with noise reveals the performance for intricate
practical problems.

IV. RESULTS

The population size and the maximum number of gener-
ations were respectively set on 18 and 200. As the purpose
of performance evaluation for several optimizations is to
be applied to large-scale and real-world engineering design
problem(for example, it takes one week for one-generation
evaluation), comparatively small values were used. It is
notable that the average values of 20 runs with different
initial populations generated randomly were employed for
evaluation.

The histories of convergence metric shown in Fig. 1 reveal
that pure DE and the hybrid methods including DE have
good performance. DE sustains damageless from noise. GA
does not have much influence from noise. Although pure
PSO has poor performance regarding noise, the hybridization
with DE improve it. The hybridization between GA and DE
gives the potentiating effect for the performance. Although
the hybridization between PSO and the others also gives

Figure 3. History of hypervolume for each test function.

similar effects, the frailty of pure PSO for noise is bottle-
neck.

The histories of cover rate shown in Fig. 2 also reveal
that pure DE and the hybrid methods including DE have
robustness for noise. GA does not have good performance.
DE has adamant performance for noise, and also the hybrid
methods including DE maintain similar robustness. Although
pure PSO is frail for noise, the hybridization including PSO
has compatibility.

The histories of hypervolume indicator shown in Fig. 3
also reveal that pure DE does not have good performance
in the case without noise, but has robustness in the case
with noise. DE has stable performance. Pure GA has good
performance in the case without noise, but it is not good
and problem dependency in the case with noise. Pure PSO is
unstable in spite of noise and its performance depends on the
test problems. In the case without noise, the hybridization
between GA and PSO because DE drag away the bad
performance. However, the hybridization including DE is
good for the problem with noise due to the restoration of
pure DE performance. Note that there is no meaningful
difference regarding the results for TNK.

As a result, a hybrid method between GA and DE will
be selected to apply to a large-scale engineering design
problem because pure DE is robust and stable for noise
and pure GA is expected to have latent performance due to
complex operator compared with DE. PSO which does not
have robustness regarding noise and the hybrid method with
PSO should not be selected because practical engineering
design problem certainly includes noise.

V. CONCLUSION

Pure and hybrid optimizers among genetic algorithm,
differential evolution, and particle swarm optimization have
been evaluated under the condition for large-scale and



real-world engineering design problem. Three performance
metrics were employed for three standard test function
problems under the consideration of noise. Consequently,
differential evolution and the hybrid optimizer including
it have robustness for noise. The hybrid method between
differential evolution and genetic algorithm should be used
and improved for large-scale practical engineering design
problem.
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