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Abstract. Data mining methods are used in decision making to select compromise
solution from the results of multi-objective optimization. In the present study, the
efficacy of the rough set theory is investigated applying the method to a known multi-
objective optimization problem. The results indicate that the rough set theory might
address local design knowledge although it is difficult to directly drive automated
decision.
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1 INTRODUCTION

The results produced by evolutionary multi-objective optimizations are not indi-
vidual optimal solution but rather an entire set of optimal solutions. That is, the
result of a multi-objective optimization is not the end of the process while from a
practical point of view the designers need a conclusive shape (or few candidates of
a conclusive shape). Thus a informatics procedure approach is proposed which is
constructed as the combination between optimization and data mining as decision
making procedure for an innovative design. The essence of this approach is the
comprehension of design space. Designers can have a possibility of breakthrough
innovation when they understand what are the characteristics of a present design
and what prevents ideal performances to be reached . This efficacy does not depend
on the upstream and downstream of design process. The effectiveness of functional
analysis of variance (ANOVA) and self-organizing map (SOM) as data mining tech-
nique is adequately confirmed in the past studies but other techniques should be
investigated in order to comprehend better and more intuitively design space. The
objective of this study is to investigate the efficacy of the rough set theory (RST) [1]
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as data mining tool also on the basis of previous experience [2]. In the present study,
RST would be applied to the simple optimization result with the formulated objec-
tive functions, and then the efficacy of RST is investigated to determine whether it
is useful or not to understand the design space.

2 OPTIMIZATION PROBLEM

2.1 Design Variables

Diameter D [in.] and height H [in.] are used as two design variables so that a
can is simply described as cylinder.

2.2 Objective Functions

The following two objective functions are defined by using volume and surface
area of a can in the present problem. There is a tradeoff between them.

1. profit per a can pc [-]:

pc = 1.7× πD2
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2. profit per unit volume po [-]:

po =
pc

πD2

4
H

(2)

2.3 Constraints

The following three constraints regarding diameter, volume, and aspect ratio of
can are set. They are considered to include commercial can shape and to be also a
practical can shape.

1.5 ≤ D [in.] ≤ 3.5

9.0 ≤ πD2

4
H [in.3] ≤ 27.0

1.3 ≤ H

D
[-] ≤ 3.0

(3)

3 ROUGH SET THEORY

RST is a new approach to address the issue of vagueness [1,3] which has become
a topic of interest for many researchers in computer science. It is an important
method for decision support systems and data mining tools. In fact, it is a new
mathematical approach to analyze data.

The basic idea behind RST is to construct approximations of sets using the binary
relation RA. The indiscernibility sets RA(x) form basic building blocks from which
subsets X ⊆ U can be assembled. If X cannot be defined in a crisp manner using
attributes A, we can circumscribe them through lower and upper approximations
AX and AX. The lower approximation consists of those objects that certainly
belong to X whereas the upper approximation consists of the objects that possibly
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xRA(x)
AX
X
AX

Figure 1: Illustrated idea of RST.

belong to X. The boundary region is defined as the difference between the upper
and the lower approximation, and consists of the objects that we cannot decisively
assign as being either members or non-members of X. The outside region is defined
as the complement of the upper approximation, and consists of the objects that
are definite non-members. An RST is any subset X ⊆ U defined through its lower
and upper approximations. Figure 1 shows these ideas graphically. In the data
mining by RST, as minimum combination of attributes is found by using reduction
to determine the decision attribute, decision rules are extracted. RST fundamentally
implements classification, discretization, reduct generation, and filtering one after
another, and then rules are generated. Since several methods are employed regarding
discretization, reduct generation, and filtering, each result would be compared. The
typical methods are summarized as follows.

• Classification

– k-means method [4]
– Self-organizing map

• Discretization

– Boolean reasoning algorithm [5]
– Entropy/Minimum description length (MDL) algorithm [6]
– Equal frequency binning [7]
– Naive algorithm [8]

• Reduct generation

– Genetic algorithm (GA) [9]
– Johnson’s algorithm [10]
– Holte’s 1R rule [11]
– Exhaustive calculation

• Filtering

– Cost filtering
– Performance filtering
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Figure 2: All solutions in objective-function
space.

Figure 3: All solutions in feasible region di-
vided into five clusters by k-means method.

The clustering is performed by using k-means method as classification. Discretiza-
tion, reduct, and filtering are also implemented by using ROSETTA [12].

4 DATA-MINING RESULTS

Figure 2 shows the view of the objective-function space. The feasible region is
narrow because of the constraints needed to build a feasible shape of the can is
considered. Since the candidates of compromise solution are selected from feasible
region, the individuals in feasible region are the subject of data mining. Figure 3
shows the feasible region divided into five clusters by k-means method with silhou-
ettes [4]. The dividing number of cluster is set by considering the balance between
the number of cluster and sihouette width. RST is carried out for each cluster,
thus, the rules are obtained for each cluster. It is notable that Fig. 3 shows that
five clusters form a line. That is, there is not much difference in the design space
between each neighboring cluster. Therefore, it is expected that there is not much
difference among rules generated for each neighboring cluster.

For discretization, five methods are used as boolean reasoning algorithm [5], en-
tropy/minimum description length (MDL) algorithm [6], equal frequency binning [7],
naive algorithm [8], and semi-naive algorithm. And also, GA [9], Johnson’s algo-
rithm [10], and Holte’s 1R rule [11], are adopted for reduct computation. Note that
the results acquired by Johnson’s algorithm for reduct strictly correspond to those
by GA. Therefore, the results obtained by Johnson’s algorithm are omitted.

The rules generated by RST are generally more than one. At least one rule
is generated when there is one individual number with a support rule (support
number). When the generated rule supports only one individual the rule does not
have global relevance. Rules supporting many individuals should be used to identify
rules with global applicability. Therefore, the rule with the highest support number
is selected in the present study.

The obtained rules are summarized in Tables 1 to 10. Since the obtained rules
are represented by using the range of design variables, rule absolutely narrows the
design-variable space. The individuals in the closed design-variable space can be



evolutionary and deterministic methods for design, optimization and control

also plotted in the objective-function space for the visualization of rule. Figures 4
to 13 show the plotted objective-function space for each rule. The acquired rules
do not directly have physical meaning because of machine learning. An observer
should find physical implication (if it exists) from the objective-function space. In
this study, a simple optimization problem on two dimensions is considered, and
physical implications can be intuitively comprehended by the observation of the
objective-function space.

The results obtained by any algorithms do not extract the characteristic indi-
viduals in each cluster. These figures show the following four facts: 1) There is no
unification among the results. There is no resemblance between the rules generated
for each neighboring cluster. The rules generated by same algorithm do not give
the commonness for each cluster. Although the Pareto solutions are extracted in
some clusters (Fig. 8 cluster5, Fig. 9 cluster5, and Fig. 11 cluster5), the rules for the
other clusters generated by the same algorithm do not address the Pareto solutions.
2) There is no assurance to generate the rule which supports the assigned cluster
only, or rather, when there is the affinity among each cluster, the similar rule might
be generated for different clusters (for example Table 2). As the affinity depends
on the algorithms, the selection of the algorithms for discretization and reduct is
difficult. 3) Design space is absolutely narrowed by rule due to the discretization of
design-variable space. Therefore, globalization is lost. The narrowness of the range
of design variable means the decrease of the support number of individuals for rule.
4) Since discretization is independently implemented into each design variable, the
generated rule has limitation regarding space expression.

These facts indicate the following two key points: 1) The index of RST to de-
termine an useful rule is not necessarily the support number of data. In fact, the
rules having the second and third value of the support number also give the above
tendency (the applicable number of the design variables for all generated rules is not
employed because of a small number of all generated rules due to a small number
of the design variables). 2) RST is not the best method to find out the general rule
in cluster. In other words, the rule can represent the local information in a specific
part of the design space. ANOVA and SOM, which are commonly used data mining
techniques, cannot find the local information because these techniques seek general
design information. ANOVA and SOM find out global design knowledge, and RST
find out local design knowledge. When the specific character is found by RST the
method can draw decisions but the decision might be not sufficiently robust with
respect to design variables.

The three problems related to the use of RST as data mining technique are
summarized as follows; 1) the obtained results cannot be intuitively employed like
as ANOVA and SOM, 2) the understanding of the physical implication of the rules
might be difficult, and 3) the selection of the key rules out of the many generated
in a complex environment might be difficult.

5 CONCLUSION

The efficacy of the rough set theory has been investigated using a known opti-
mization problem. The support number was used to select an individual rule from all
rules generated by the rough set theory. Consequently, the selected data addresses
without a common principle among divided clusters even when different methods
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Table 1: Summary of the obtained rules by RST with discretization using equal frequency binning
and reduct using GA for each cluster.

Cluster 1 dv1 < 2.07 ∧ dv2 < 4.02
Cluster 2 2.07 ≤ dv1 < 2.33 ∧ dv2 < 4.02
Cluster 3 2.07 ≤ dv1 < 2.33 ∧ 4.02 ≤ dv2 < 4.84
Cluster 4 2.07 ≤ dv1 < 2.33 ∧ 4.84 ≤ dv2
Cluster 5 2.33 ≤ dv1 ∧ 4.84 ≤ dv2

Table 2: Summary of the obtained rules by RST with discretization using equal frequency binning
and reduct using Holte’s 1R rule for each cluster.

Cluster 1 dv1 < 2.07 ∧ dv2 < 4.02
Cluster 2 dv1 < 2.07 ∧ dv2 < 4.02
Cluster 3 2.07 ≤ dv1 < 2.33 ∧ 4.84 ≤ dv2
Cluster 4 2.33 ≤ dv1 ∧ 4.84 ≤ dv2
Cluster 5 2.33 ≤ dv1 ∧ 4.84 ≤ dv2

Table 3: Summary of the obtained rules by RST with discretization using boolean reasoning
algorithm and reduct using GA for each cluster.

Cluster 1 dv1 < 1.99 ∧ dv2 < 3.80
Cluster 2 dv1 < 1.99 ∧ 4.42 ≤ dv2 < 5.20
Cluster 3 1.99 ≤ dv1 < 2.19 ∧ 4.42 ≤ dv2 < 5.20
Cluster 4 2.19 ≤ dv1 < 2.41 ∧ 4.42 ≤ dv2 < 5.20
Cluster 5 2.19 ≤ dv1 < 2.41 ∧ 5.20 ≤ dv2

Table 4: Summary of the obtained rules by RST with discretization using boolean reasoning
algorithm and reduct using Holte’s 1R rule for each cluster.

Cluster 1 dv1 < 1.99 ∧ dv2 < 3.80
Cluster 2 dv1 < 1.99 ∧ dv2 < 3.80
Cluster 3 1.99 ≤ dv1 < 2.19 ∧ 4.42 ≤ dv2 < 5.20
Cluster 4 2.41 ≤ dv1 ∧ 5.20 ≤ dv2
Cluster 5 2.41 ≤ dv1 ∧ 5.20 ≤ dv2

Table 5: Summary of the obtained rules by RST with discretization using entropy/MDL algorithm
and reduct using GA for each cluster.

Cluster 1 dv1 < 2.05 ∧ dv2 < 3.60
Cluster 2 dv1 < 2.05 ∧ 4.46 ≤ dv2 < 4.68
Cluster 3 2.43 ≤ dv1 < 2.45 ∧ dv2 < 3.60
Cluster 4 2.29 ≤ dv1 < 2.45 ∧ 4.46 ≤ dv2 < 4.68
Cluster 5 2.77 ≤ dv1



evolutionary and deterministic methods for design, optimization and control

Table 6: Summary of the obtained rules by RST with discretization using entropy/MDL algorithm
and reduct using Holte’s 1R rule for each cluster.

Cluster 1 dv1 < 2.05
Cluster 2 dv1 < 2.05
Cluster 3 dv1 < 2.05
Cluster 4 4.46 ≤ dv2 < 4.68
Cluster 5 2.77 ≤ dv1

Table 7: Summary of the obtained rules by RST with discretization using naive algorithm and
reduct using GA for each cluster.

Cluster 1 dv1 < 1.73
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Table 8: Summary of the obtained rules by RST with discretization using naive algorithm and
reduct using Holte’s 1R rule for each cluster.

Cluster 1 dv1 < 1.73
Cluster 2 1.85 ≤ dv1 < 1.87
Cluster 3 1.99 ≤ dv1 < 2.01
Cluster 4 2.13 ≤ dv1 < 2.15
Cluster 5 2.77 ≤ dv1

Table 9: Summary of the obtained rules by RST with discretization using semi-naive algorithm
and reduct using GA for each cluster.

Cluster 1 dv1 < 1.85 ∧ 3.84 ≤ dv2 < 5.34
Cluster 2 1.85 ≤ dv1 < 1.97 ∧ 3.84 ≤ dv2 < 5.34
Cluster 3 2.11 ≤ dv1 < 2.25 ∧ 3.84 ≤ dv2 < 5.34
Cluster 4 2.25 ≤ dv1 ∧ 3.84 ≤ dv2 < 5.34
Cluster 5 2.25 ≤ dv1 ∧ 3.84 ≤ dv2 < 5.34

Table 10: Summary of the obtained rules by RST with discretization using semi-naive algorithm
and reduct using Holte’s 1R rule for each cluster.

Cluster 1 3.84 ≤ dv2 < 5.34
Cluster 2 3.84 ≤ dv2 < 5.34
Cluster 3 3.84 ≤ dv2 < 5.34
Cluster 4 3.84 ≤ dv2 < 5.34
Cluster 5 2.25 ≤ dv1
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Figure 4: Addressed data by RST with discretization using equal frequency binning and reduct
using GA for each cluster.

Figure 5: Addressed data by RST with discretization using equal frequency binning and reduct
using Holte’s 1R rules for each cluster.

Figure 6: Addressed data by RST with discretization using boolean reasoning algorithm and reduct
using GA for each cluster.

Figure 7: Addressed data by RST with discretization using boolean reasoning algorithm and reduct
using Holte’s 1R rules for each cluster.

Figure 8: Addressed data by RST with discretization using entropy/MDL algorithm and reduct
using GA for each cluster.
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Figure 9: Addressed data by RST with discretization using entropy/MDL algorithm and reduct
using Holte’s 1R rule for each cluster.

Figure 10: Addressed data by RST with discretization using naive algorithm and reduct using GA
for each cluster.

Figure 11: Addressed data by RST with discretization using naive algorithm and reduct using
Holte’s 1R rule for each cluster.

Figure 12: Addressed data by RST with discretization using semi-naive algorithm and reduct using
GA for each cluster.

Figure 13: Addressed data by RST with discretization using semi-naive algorithm and reduct using
Holte’s 1R rule for each cluster.
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are used for discretization and reduct computation. The principal rule should not
be selected by using the support number because the rough set theory is not the
method to find out global knowledge. The physical implication of the rule gener-
ated by the rough set theory should be comprehended. The peculiarity of rules as
essence should be also selected. These problems need to be solved so that the rough
set theory is directly intuitively used as decision maker.
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