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Abstract. A large-scale, real-world application of Evolutionary Multi-
Criterion Optimization (EMO) is reported in this paper. The Multidisci-
plinary Design Optimization among aerodynamics, structures and aeroe-
lasticity for the wing of a transonic regional jet aircraft has been per-
formed using high-fidelity models. An Euler/Navier-Stokes (N-S) Com-
putational Fluid Dynamics (CFD) solver is employed for the aerody-
namic evaluation. The NASTRAN, a commercial software, is coupled
with a CFD solver for the structural and aeroelastic evaluations. Adap-
tive Range Multi-Objective Genetic Algorithm is employed as an op-
timizer. The objective functions are minimizations of block fuel and
maximum takeoff weight in addition to difference in the drag between
transonic and subsonic flight conditions. As a result, nine non-dominated
solutions have been generated. They are used for tradeoff analysis among
three objectives. One solution is found to have one percent improvement
in the block fuel compared to the original geometry designed in the con-
ventional manner. All the solutions evaluated during the evolution are
analyzed by Self-Organizing Map to extract key features of the design
space.

1 Introduction

Recent researches on Multidisciplinary Design Optimization (MDO) have been
conducted for aircraft design[1, 2]. Pure aerodynamic optimization shows wings
with a low thickness-to-chord ratio and a high aspect ratio. These wings suffer
undesirable aeroelastic phenomena from the low bending and torsional stiffness.
Aerostructural interacted optimization is needed to overcome these phenomena
and to perform a realistic aircraft design[3]. This multi-criterion optimization
will provide a good application field for EMO.

The project to develop a more environmentally suitable, highly efficient tran-
sonic regional jet aircraft has been founded by Ministry of Economy, Trade and
Industry (METI) since 2003. Mitsubishi Heavy Industries, Ltd. (MHI) is the
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prime contractor for the project. The aim of this project is to build a demon-
strator with advanced technologies, such as low drag wing design, light weight
composite structures which are necessary for reduction of environmental bur-
den. The initial aircraft geometry has been obtained from a conventional design
method.

The objective of this study is to optimize the three-dimensional wing shape
for the proposed regional jet aircraft using evolutionary multi-objective opti-
mization with high-fidelity simulations as a collaboration between Institute of
Fluid Science (IFS), Tohoku University and MHI. From the optimization results,
tradeoff analysis has been performed among the three objectives. Moreover, by
using a data mining technique, the aerostructural design knowledge for transonic
regional jet aircraft has been obtained.

In the present study, high-fidelity simulation tools such as Reynolds-averaged
Navier-Stokes solver for aerodynamics, NASTRAN, a versatile and high-fidelity
commercial software, for structures and aeroelasticity are coupled together for
MDO. Although the Euler/N-S solver may be still too expensive for the real-
world design environment, it will predict complex and nonlinear flow phenomena
such as shock wave and separation more accurately. Such nonlinearity will pro-
vide a severe test case for EMO. With the aid of rapid progress in computer
hardware, the demonstration in this paper will become a standard design prac-
tice soon.

2 Multidisciplinary Design Optimization

2.1 Objective Functions

In this study, because the target range for the regional jet is given, the minimiza-
tion of the block fuel derived from aerodynamics and structures is selected as an
objective function instead of the range maximization commonly used for aircraft
design. The block fuel is defined as the minimum fuel mass for the fixed range.
In addition, two more objective functions are considered as the minimization of
the maximum takeoff weight and the minimization of the difference in the drag
coefficient between transonic and subsonic flight conditions.

2.2 Geometry Definition

The design variables define the aerodynamic geometry. Structural optimization
and aeroelastic transformation are performed using NASTRAN under the given
aerodynamic geometry after aerodynamics, structures and flutter are evaluated,
the objective functions are calculated.

The design variables are related to airfoil, twist and wing dihedral. The airfoil
is defined at three spanwise cross sections using the modified PARSEC[4] with
nine design variables (xup, zup, zxxup , xlo, zlo, zxxlo

, αTE , βTE and rLElo
/rLEup)

per cross section shown in Fig. 1. The twists are defined at six spanwise locations,
and then wing dihedrals are defined at kink and tip locations. An entire wing
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Fig. 1. Illustration of the modified PARSEC airfoil shape defined by nine design vari-
ables.

shape is thus defined by using 35 design variables. In this study, the geometry
of each individual is generated by the unstructured dynamic mesh method[5, 6]
using displacement from the initial geometry.

The five constraints are considered. The first three are about geometrical
constraints and the last two are for the results as follows; 1) PARSEC works
successfully. 2) Rear spar heights are greater than required for the housing of
the control surfaces. 3) The lower and upper surfaces of the spars change mono-
tonically in the spanwise direction. 4) The lift coefficients increase monotonically
as Mach number increases. 5) The evaluated fuel for the given range is less than
the wing fuel volume.

2.3 Optimizer

Evolutionary algorithms (EAs), in particular genetic algorithms (GAs), are based
on the theory of evolution, where a biological population evolves over genera-
tions to adapt to an environment by selection, crossover and mutation. Fitness,
individual and genes in the evolutionary theory correspond to an objective func-
tion, design candidate and design variables in design optimization problems,
respectively.

GAs search the optimum from multiple points in the design space simulta-
neously and stochastically. GAs can prevent the search from settling in a local
optimum. Moreover, GAs do not require computing gradients of the objective
function. These features lead to the following advantages of GAs coupled with
computational fluid dynamics (CFD): 1) GAs have the capability of finding
global optimal solutions. 2) GAs can be processed in parallel. 3) High fidelity
CFD codes can be adapted to GAs easily without any modification. 4) GAs are
not sensitive to any noise that might be present in the computation.

Adaptive range multi-objective genetic algorithm (ARMOGA)[7] is an effi-
cient multi-objective evolutionary algorithm (MOEA) designed for aerodynamic
optimization and multidisciplinary design optimization problems using high-
fidelity CFD solvers with a large computational time. ARMOGA has the range
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adaptation based on population statistics, and the population is re-initialized at
every N generations so that the search region adapts toward promising regions.

In the present ARMOGA, fitness value of each solution is determined by
Fleming and Fonseca’s Pareto-ranking method coupled with fitness sharing ap-
proach[8]. Each individual is assigned a rank according to the number of individ-
uals dominating it. The assigned fitness values are divided by the niche count,
which is calculated by summing the sharing function values. To find the Pareto
solutions more effectively, the so-called best-N selection[9] is also implemented.
After shared fitness values are determined for all individuals, the stochastic uni-
versal selection (SUS)[10] is applied to select better solutions for producing a
new generation. Blended crossover (BLX-α)[11] and polynomial mutation meth-
ods[12] are adopted for crossover and mutation.

The advantages of ARMOGA are the following: It is possible to obtain the
non-dominated solutions efficiently because of the concentrated search of the
probable design space. It also produces diversified solutions.

2.4 Evaluation Method

The optimizer generates eight individuals per generation, and evaluates aerody-
namic and structural properties of each one as follows. 1) Structural optimiza-
tion is performed to realize minimum wing weight with constraints of flutter
and strength requirements. 2) Static aeroelastic analysis is performed at three
flight conditions to determine the aeroelastic deformed shapes by Euler solver.
3) Aerodynamic evaluations are performed for the aeroelastic deformed shapes
using Navier-Stokes solver. 4) Flight envelope analysis is performed using the
above obtained properties to evaluate objective functions by N-S solver. Using
objective functions evaluated, the optimizer generates new individuals for the
next generation via genetic operations such as selection, crossover and muta-
tion.

In the present study, MSC. NASTRANTM[13] which is a high-fidelity com-
mercial software is employed for the structural and aeroelastic evaluations. De-
tailed structural model was provided by MHI. Besides, the unstructured mesh
method[14, 15] is used to evaluate aerodynamic performance. The Euler equa-
tions are computed for structural optimization and aeroelasticity. The three-
dimensional Reynolds-averaged Navier-Stokes (RANS) equations are computed
with a finite-volume cell-vertex scheme. The unstructured hybrid mesh method[16]
is applied to capture the boundary layer accurately and efficiently. The Harten-
Lax-van Leer-Einfeldt-Wada Riemann solver[17] is used for the numerical flux
computations. The Venkatakrishnan’s limiter[18] is applied when reconstruct-
ing second order accuracy. The lower-upper symmetric-Gauss-Seidel implicit
scheme[19] is applied for time integration.

Considering a turbulence model, the Spalart-Allmaras one-equation model
modified by Dacles-Mariani et al.[20] is employed without transition. This model
is confirmed to be effective for capturing the complex vortex structure[21].

Euler and RANS computations are carried out at subsonic and transonic
flight conditions, respectively. Taking advantage of the parallel search in EAs,
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the present optimization is parallelized on vector-parallel machines NEC SX-5
and SX-7. The master processing element (PE) manages ARMOGA, while the
slave PEs compute aerostructural evaluation processes. Slave processes do not
require synchronization.

3 Optimization Results

The population size is set to eight, and then roughly 70 Euler and 90 RANS com-
putations are performed in one generation. It takes roughly one hour and nine
hours of CPU time of NEC SX-5 and SX-7 one PE for Euler and RANS com-
putations, respectively. The population is re-initialized at every five generations
for the range adaptation. The total evolutionary computation of 16 generations
is carried out so far. The evolution may not converge yet. However, the result
is satisfactory, because several non-dominated solutions achieve significant im-
provements over the initial design. Furthermore, enough number of solutions
have been searched so that the sensitivity of the design space around the initial
design can be analyzed. This will provide useful information for designers.

All solutions evaluated are shown in Fig. 2, and Fig. 3 shows all solutions pro-
jected on two dimensional plane between two objectives, the block fuel and the
drag divergence. As this figure shows that the non-dominated front is generated,
there is tradeoff between the block fuel and the drag divergence.

Although the wing box weight, on the whole, tends to increase compared with
that of the initial geometry, the block fuel can be also reduced. It means that
aerodynamic performance can redeem the penalty due to the structural weight.
An individual, indicated as ‘optimized’, on the non-dominated front shown in
Fig. 3 is picked up, and then optimized geometry is compared with the initial
geometry. Figure 4 shows the comparison of polar curves. Although the corre-
sponding the drag minimization is not considered here, this figure shows that
the drag coefficients tend to reduce on the whole. Comparing the polar curves
at the constant lift coefficient for the cruising condition, the drag coefficient of
the optimized geometry has been found to be reduced 5.5 counts. Due to the
drag improvement, the block fuel of the optimized geometry can be decreased
over one percent even with its structural weight penalty.

Next, the mechanism of the drag reduction is investigated. Figure 5 shows the
comparison of the spanwise distributions of lift and drag coefficients of initial and
optimized geometries. This figure shows that the drag decreases at the 35.0 %
spanwise location. Figure 6 shows the comparison of the pressure distributions at
the 35.0 % spanwise location. This figure shows that the variation of the leading-
edge bluntness works to depress the shock wave on the upper wing surface,
namely, to reduce the wave drag. In fact, the pressure drag coefficient is reduced
by 5.6 counts. Figure 7 shows the comparison of shock wave visualized by the
shock function Fshock[22] which is given as follows,

Fshock =
V · ∇P

a · |∇P |
(1)
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Fig. 2. All solutions plotted in three di-
mensional space of all objective function.

Fig. 3. All solutions on two dimensional
plane between block fuel and drag diver-
gence.

where V is velocity vector, P is pressure and a denotes the local speed of sound.
The shock wave of the optimized geometry is weaker than the initial geometry
in the vicinity of the 35.0 % spanwise location shown in Fig. 7. This fact signify
the wave drag reduction. Moreover, the vorticity of wing wake of the optimized
geometry in the vicinity of the 35.0 % spanwise location is weaker than of initial
geometry shown by helicity contours in Fig. 8. Therefore, these figures show that
the shape near the 35.0 % spanwise location, namely, the shape in the vicinity
of the kink location has been found effective to reduce the drag.

4 Data Mining

If the optimization problem has only two objectives, tradeoffs can be visual-
ized easily. However, if there are more than two objectives, the technique to
visualize the computed non-dominated solutions is desired[23]. Therefore, in the
present study, Self-Organizing Maps (SOMs) suggested by Kohonen[24] have
been employed. SOM is not only the technique for the visualization but also
the application tool for the intelligent compression of the information. In other
words, SOM can be applied for the data mining technique to acquire the knowl-
edge about design space. In this study, Viscovery R© SOMine[25] produced by
Eudaptics GmbH in Austria is employed.

4.1 Self-Organizing Map

Although SOMine is based on the SOM concept and algorithm, it employs an
advanced variant of unsupervised neural networks, i.e. Kohonen’s Batch-SOM.

The algorithm consists of two steps that are iteratively repeated until no
more significant changes occur. First the distances between all data items {xi}
and the model vectors {mj} are computed and each data item xi is assigned to
the unit ci that represents it best.
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Fig. 4. Comparison of the polar curves
between initial and optimized geometries. Fig. 5. Comparison of the lift and drag

coefficients spanwise distributions be-
tween initial and optimized geometries.

Fig. 6. Comparison of the pressure distributions and airfoil shapes between initial and
optimized geometries at 35 % spanwise location.

Fig. 7. Comparison of shock wave visualizations colored by entropy at the transonic
cruise flight condition between initial (left) and optimized (right) geometries.
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Fig. 8. Comparison of helicity contours of wing wake at the transonic cruise flight
condition between initial (left) and optimized (right) geometries.

In the second step, each model vector is adapted to better fit the data it
represents. To ensure that each unit j represents similar data items as its neigh-
bors, the model vector mj is adapted not only according to the assigned data
items but also in regard to those assigned to the units in the neighborhood. The
neighborhood relationship between two units j and k is usually defined by a
Gaussian-like function

hjk = exp

(
−

d2
jk

r2
t

)
(2)

where djk denotes the distance between the units j and k on the map, and rt

denotes the neighborhood radius which is set to decrease with each iteration t.
Assuming a Euclidean vector space, the two steps of the Batch-SOM algo-

rithm can be formulated as

ci = arg min ‖xi − mj‖ (3a)

m∗
j =

∑
i

hjcixi∑
i

hjci

(3b)

where m∗
j is the updated model vector.

In contrast to the standard Kohonen algorithm, which makes a learning
update of the neuron weights after each record being read and matched, the
Batch-SOM takes a ‘batch’ of data, typically all records, and performs a ‘col-
lected’ update of the neuron weights after all records have been matched. This
is much like ‘epoch’ learning in supervised neural networks. The Batch-SOM is
a more robust approach, since it mediates over a large number of learning steps.
Most important, no learning rate is required. The SOMine implementation com-
bines four enhancements to the plain Batch-SOM algorithm[26]. In SOMine, the
uniqueness of the map is ensured by the adoption of the Batch-SOM and the
linear initialization for input data.

Much like some other SOMs[27], SOMine creates a map in a two-dimensional
hexagonal grid. Starting from numerical, multivariate data, the nodes on the
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grid gradually adapt to the intrinsic shape of the data distribution. Since the
order on the grid reflects the neighborhood within the data, features of the data
distribution can be read off from the emerging map on the grid.

In SOMine, the trained SOM is systematically converted into visual informa-
tion. The tool provides an extensive built-in capability for both pre-processing
and post-processing as well as for the automatic colorcoding of the map and
its components. SOMine is particularly useful in the determination of depen-
dencies between variables as well as in the analysis of high-dimensional cluster
distributions.

4.2 Cluster Analysis

Once SOM projects input space on a low-dimensional regular grid, the map can
be utilized to visualize and explore properties of the data. When the number of
SOM units is large, tofacilitate quantitative analysis of the map and the data,
similar units need to be grouped, i.e., clustered. The two-stage procedure — first
using SOM to produce the prototypes which are then clustered in the second
stage — was reported to perform well when compared to direct clustering of the
data[27].

Hierarchical agglomerative algorithm is used for clustering here. The algo-
rithm stats with a clustering where each node by itself forms a cluster. In each
step of the algorithm two clusters are merged: those with minimal distance ac-
cording to a special distance measure, the SOM-Ward distance[25]. This measure
takes into account whether two clusters are adjacent in the map. This means that
the process of merging clusters is restricted to topologically neighbored clusters.
The number of clusters will be different according to the hierarchical sequence
of clustering. A relatively small number will be chosen for visualization, while
a large number will be used for generation of codebook vectors for respective
design variables.

4.3 Tradeoff Analysis and Data Mining of the Design Space

All of the solutions have been projected onto the two-dimensional map of SOM.
Figure 9 shows the resulting SOM with 10 clusters considering the three ob-
jectives. Furthermore, Fig. 10 shows the SOMs colored by the three objectives
and three characteristic parameters, respectively. These color figures show the
SOM shown in Fig. 9 can be grouped as follows: Upper left corner corresponds
to the designs with high block fuel and maximum takeoff weight. Lower left
corner corresponds to the designs with low block fuel and high drag divergence.
Figure 10(a) and Fig. 10(c) show that there is a tradeoff between these two ob-
jective functions. Lower center area corresponds to the designs with low block
fuel. Right hand side corresponds to the designs with low drag divergence. As
Fig. 10(a) is similar coloring to Fig. 10(b), there is not a severe tradeoff between
the block fuel and the maximum takeoff weight. Lower right corner corresponds
to the designs with low of all objectives. Extreme non-dominated solutions are
indicated in Fig. 10(a) to (c). Because they are in the different clusters, the
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Fig. 9. SOM of all solutions in the three deimensional objective function space.

simultaneous optimization of the three objectives is impossible. However, the
lower right cluster has relatively low values for all three objectives. This region
of the design space may provide a sweet-spot for the present design problem.

Figure 10(d) shows the SOM colored by the drag coefficient at the cruising
flight condition, the lower value exists on the lower right corner. As this area
clusters the designs with the low of all objectives, this fact inspires that all
objectives can be optimized simultaneously while the drag at cruising flight
condition is reduced. Furthermore, because the value of the maximum takeoff
weight shown in Fig. 10(b) existing at a the similar location as in Fig. 10(d), the
drag coefficient is found effective to reduce the maximum takeoff weight.

Figure 10(e) shows the SOM colored by the lift-to-drag ratio at the cruising
flight condition, the lower value exists on the upper left corner. Because the
higher value of the block fuel shown in Fig. 10(a) exists at a similar location, the
lower lift-to-drag ratio is effective to increase the block fuel strictly. Furthermore,
the higher value of lift-to-drag ratio exists on the lower area shown in Fig. 10(e).
Because the lower value of the block fuel shown in Fig. 10(a) exist at a similar
location, the higher lift-to-drag ratio is effective to decrease the block fuel. But,
the higher value of the transonic lift-to-drag ratio is not necessarily effective to
reduce the block fuel in Fig. 10(e) because the range of not only cruise but also
of takeoff-to-landing is considered in this study.

Figure 10(f) shows the SOM colored by the angle between inboard and out-
board on upper wing surface expressing the gull-wing at kink location. When
this angle is greater/less than 180 deg, it means gull/inverted gull-wing. The
characteristic inverted gull-wing shape is shown in Fig. 11. The location where
the higher value exists shown in Fig. 10(f) corresponds to the position where
the higher value of the drag coefficient at cruising flight condition shown in
Fig. 10(d). However, when the angle is less than 180 deg, there is little corre-
lation between Figs. 10(d) and (f). As it is known that the inverted gull-wing
obtains structural weight increase, no-gull wing should be designed for structure
and manufacture.
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(a) SOM colored by the block fuel as the objec-

tive function 1

(c) SOM colored by the drag divergence as the

objective function 3

(e) SOM colored by the lift-to-drag ratio at the

cruising flight condition

(b) SOM colored by the maximum takeoff

weight as the objective function 2

(d) SOM colored by the drag coefficient at the

cruising flight condition

(f) SOM colored by the angle on upper surface

expressing the gull-wing at kink location

Fig. 10. SOM colored by the objective functions and the characteristic values. The
symbol × denotes the respective extreme non-dominated solutions in (a), (b) and (c).
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Fig. 11. Visualization of a characteristic inverted gull-wing.

Finally, Fig. 12 shows the SOM colored by the characteristic design variables.
Figure 12(a) shows the SOM colored by the design variable of PARSEC xup at
the 55.5 % spanwise location. When this value is increased in Fig. 12(a), the
transonic drag is increased simultaneously shown in Fig.10(d). This means that
the value of PARSEC xup at the 55.5 % spanwise location has influence upon
the transonic drag increase. Figures 12(b) and (c) show the SOMs colored by the
design variables of PARSEC rLElo

/rLEup at the 35.0 % spanwise location and
PARSEC zxxlo

at the 55.5 % spanwise location, respectively. The decrease value
of rLElo

/rLEup and the increase value of zxxlo
in Figs. 12(b), (c) have influence

upon the transonic lift-to-drag ratio decrease simultaneously shown in Fig. 10(e).

Figures 12(d), (e) and (f) show the SOMs colored by the design variables
of the twist at the 35.0 %, 55.5 % and 96.0 % spanwise location, respectively.
The geometry near the 55.5 % spanwise location does not improve largely about
angle of attack shown in Fig. 12(e). The geometry near the 96.0 % spanwise
location improves the twist up. In reverse, the geometry near the 35.0 % spanwise
location improves the twist down. The improvement in the vicinity of the 35.0 %
spanwise location is to restrain shock wave, namely, to reduce wave drag shown
in Fig. 7. When the drag decreases, the lift may decrease simultaneously. The
lift is increased to compensate for the reduction in the vicinity of kink location
so that the angle of attack of the outboard wing is increased and roughly set
to zero. It is noted that the angle of attack near the kink location is effective
to the transonic drag especially as shown in Fig. 12(d). This fact corresponds
to the phenomena visualized in Fig. 7. Specifically, as the shock wave which
arises in the vicinity of the kink location is weaken, the angle of attack near the
outboard wing with twist up is replaced and lost lift is made up to replace the
angle of attack with twist down so that wave drag reduces. Twist up at outboard
wing has no influence for transonic drag shown in Fig. 12(f). The other design
variables are not found effective to reduce the objective functions and to increase
aerodynamic performance as drag and lift-to-drag ratio at transonic cruise flight
condition. Data mining technique using SOM has been found to be able to
classify the design variables considering the influence upon the objectives and
the aerodynamic performance.
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(a) SOM colored by the design variable of PAR-

SEC xup at the 55.5 % spanwise location

(c) SOM colored by the design variable of PAR-

SEC zxxlo
at the 55.5 % spanwise location

(e) SOM colored by the design variable of the

twist angle at the 55.5 % spanwise location

(b) SOM colored by the design variable of PAR-

SEC rLElo
/rLEup at the 35.0 % spanwise loca-

tion

(d) SOM colored by the design variable of the

twist angle at the 35.0 % spanwise location

(f) SOM colored by the design variable of the

twist angle at the 96.0 % spanwise location

Fig. 12. SOM colored by the characteristic design variables.
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5 Conclusion

The wing shape of a regional jet aircraft has been optimized using Multidisci-
plinary Design Optimization techniques considering three aerostructural objec-
tive functions with high-fidelity evaluation and Adaptive Range Multi-Objective
Genetic Algorithm. Consequently, the objective function value considering block
fuel has been reduced over one percent compared with the initial geometry. The
geometry change at the kink location has been found effective for the drag re-
duction. The tradeoff information among three objective functions has been
revealed, and a tradeoff has been found between the block fuel and the drag
divergence. Moreover, data mining for the design space has been performed us-
ing Self-Organizing Map. Therefore, the particular design variables have been
found effective to reduce the objective functions and aerodynamic performance.
Detailed observation of SOM reveals there is a sweet-spot in the design space
where the three objectives become relatively low. The data mining technique
provides knowledge about the design space, which is considered an important
facet of solving optimization problems.
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