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Multidisciplinary design exploration with multi objectives has been performed for the
wing shape of a silent supersonic technology demonstrator among aerodynamics, structures,
and boom noise. Aerodynamic evaluation was carried out by solving Euler equations on
computational fluid dynamics, and composite structural evaluation was performed by using
NASTRAN for strength and vibration requirements on computational structural dynamics.
The intensity of sonic boom was evaluated by a modified linear theory. The optimization
problem had five objective functions as the minimizations of the pressure/friction drags and
the boom intensity at supersonic condition, and the composite structural weight as well as
the maximization of the lift at subsonic low speed condition. The three-dimensional wing
shape defined by 58 design variables was optimized on particle swarm optimization and
genetic algorithm hybrid method. In the structural evaluation, the combination optimiza-
tion of stacking sequences of laminated composites was performed for inboard and outboard
wings with strength and vibration requirements. Consequently, 75 non-dominated solutions
were obtained. Moreover, data mining was performed to obtain the design knowledge for
deciding a compromise solution. The data mining revealed the knowledge in the design
space, such as the tradeoff information among the objective functions, and the correlations
between objective functions and design variables. A compromise solution was successfully
determined by using the obtained design knowledge.

I. Introduction

Since the flight experiment of the non-powered supersonic experimental scaled airplane NEXST-1 was
succeeded in October 20051, the silent supersonic technology demonstrator (S3TD) then has been re-

searching and developing as a next step in Japan Aerospace Exploration Agency (JAXA)2. The initial 0th
shape of S3TD was already designed to focus on low boom and low pressure drag. However, its shape has
insufficient performace regarding lift at low speed. Therefore, the second shape with a primary purpose of
lift-performance improvement is re-designed to keep low boom intensity(the first shape was for minor change
to re-design low-boom geometry). One of the views of this demonstrator is to design using multidisciplinary
design optimization (MDO) system.

In the past multi-objective aerodynamic optimization for a supersonic transport (SST)3, the wing with
large sweepback angle was generated to reduce the drag and boom intensity as well as to maintain the lift.
However, its wing is not practically designed because of no consideration regarding structures. No matter
how an single disciplinary optimization is performed, there is insufficient knowledge to make use of a practical
design. That is, multidisciplinary exploration is needed to design and develop a practical aircraft.

As a multi-objective (MO) problem has tradeoffs as an optimum set (called as Pareto-optimal solutions
or non-dominated solutions), an MO optimization should be performed to identify such tradeoffs efficiently.
MO evolutionary algorithms (MOEAs) were applied to MO optimizations to sample multiple non-dominated
solutions because evolutionary algorithms (EAs) sought optimum solutions in parallel using a population of
design candidates. In this study, the hybrid method between MO particle swarm optimization (PSO) and
adaptive range MOGA was applied to a large-scale and real-world problem to search both global and local
optimum solutions efficiently.
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Moreover, the design knowledge is acquired from MO optimization result by performing data mining.
Data mining is a role of the post-process for MO optimization, and essential for the solving of MO opti-
mization. Although design optimization problems are important for engineering, the most important point
is the extraction of the knowledge in design space from optimization result. The result obtained by MO
optimization problem using EAs is not a sole solution but an optimum set. That is, as MO optimization
result is insufficient information for practical design because designers need a conclusive shape. Therefore,
data mining techniques can be applied to efficiently obtain fruitful design knowledge. As the combination
between the optimization and data mining is a sequence process, it is called as multidisciplinary design
exploration (MDE) instead of MDO in the present study. Although the previous MDE was performed for a
transonic regional jet aircraft4, this MDE system had two problems which the wing planform was fixed, and
no composite material was considered. Its MDE was dominated by aerodynamics due to these problems.

The objective of the present study is to perform the practical MDE for the S3TD airplane, i.e., to
optimize the three-dimensional wing shape for the S3TD airplane using computational fluid dynamics (CFD)
and computational structural dynamics (CSD) evaluation tools, on a PSO/GA hybrid method. Especially,
wing planform is design to improve lift performance and also to restrain low boom performance. Moreover,
the design knowledge for S3TD airplane is obtained by using data mining, a compromise solution is then
determined through the designers’ discussion using the design knowledge.

II. Multidisciplinary Design Optimization

A. Objective Functions

The following five objective functions were defined. First three objective functions are for aerodynamics,
fourth is for hoise, and last is for structures.

1. The minimization of the pressure drag at supersonic cruising condition: S ·CDp (Mach number of 1.6,
altitude of 16km, and target CL of 0.132 for the 0th shape of S3TD. S · Csupersonic

L = const. S denotes
the one-sided wing reference area.

2. The minimization of the friction drag at supersonic condition: S · CDf
.

3. The maximization of the lift at subsonic condition: S ·CL (Mach number of 0.2 and angle of attack of
10.0deg).

4. The minimization of sonic boom intensity Iboom at supersonic condition. This objective function value
was defined as |∆Pmax| + |∆Pmin| at the location with largest peak of sonic-boom signature across
boom carpet.

5. The minimization of a composite structural weight Wc for wing using fiber angle of ply and a number
of ply with the fulfillment of the strength and vibration requirements.

B. Constraints

As the objective functions were defined to have tradeoff relations, no constraint for flight condition was
considered. The geometrical constraints were considered for wing shape definition. The ridge line between
wing and fuselage should be extracted. Moreover, the chord length c should satisfy croot > ckink > ctip. In
addition, the constraint of maximum thickness at each spanwise location is considered. When an individual
corresponds to a constraint, another individual is generated because the individual cannot take form as an
airplane. This operation is run over until the provided population size is set.

C. Geometry Definition

The design variables were related to planform, airfoil shape, wing twist, and position relative to the fixed
fuselage on the 0th shape. A wing planform with a kink was determined by seven design variables as shown
in Fig. 1. Airfoil shapes were defined at the wing root, kink, and tip using thickness distributions and
camber lines. The thickness distributions were described by Bézier curves using nine control points with
10 design variables, and linearly interpolated in the spanwise direction. The camber line distributions were
parameterized using Bézier curves with four control points with four design variables, and incorporated
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linearly in the spanwise direction. Wing twist was represented by using B-splines using six control points
with six design variables. The twist position was 80% chordwise location so that the straight hinge line for
aileron was secured. The position of the wing root relative to the fuselage was parameterized by z coordinate
of the leading edge, angle of attack, and dihedral. The entire computational geometry was thus defined by
using 58 design variables summarized in Table 1. Although the S3TD has the components of fuselage, main
wing, engine, and tail wing, the wing-body configuration was considered shown in Fig 2. In the present
study, a robust surface mesh was automatically generated in the following steps; a) generation of the wing
geometry, b) extraction of the intersection line between the body and wing, c) deletion of the wing geometry
which is inside the body, and they are united, d) generation of the mesh point distributions along created
ridges, and e) generation of unstructured surface mesh using advancing front method5,6.

Table 1. Detail of design variables.

serial number correspondent design variable
1, 2 span length inboard, outboard
3 - 5 chord length root, kink, tip
6, 7 sweepback angle inboard, outboard
8 z coordinate root leading edge
9 angle of attack for attachment to fuselage
10 dihedral angle

11 - 22 camber control points root, kink, tip
23 - 52 thickness control points root, kink, tip
53 - 58 twist control points
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Figure 1. Wing planform definition using seven design variables.

D. Optimizer

A hybrid method between PSO7,8 and GA9,10 was employed. Recent optimization work often uses a response
surface model(RSM) based on kriging surrogate model to restrain evaluation time11–13. However, when the
problem with many design variables is considered, the many initial sample points are needed to maintain
the accuracy of response surface14 (10 times number of design variables is generally needed for initial sample
points). In the present study, RSM is not selected to avoid the problem of large evaluation time for initial
samples.

GAs have generally not for a capability to search local optima but for a faculty of global search. On
the other hand, PSO is efficient to search for local optima because it deals with the coordinates of design
variables directly. The hybridization between them may produce both capabilities. As PSO and GA use
mutation (called as perturbation in PSO) for the maintenance of solution diversity and the prevention of
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Figure 2. 0th shape without engine and tail wing on
unstructured mesh colored by the pressure distribu-
tion.

Figure 3. Deformed shape of 0th shape colored by
the displacement for height direction.

convergence to a local optima, the convergence to Pareto solutions becomes worse. The PSO/GA hybrid
method improves of diversity and enriches the quality of the obtained solutions. It is notable that PSO
means MOPSO, GA denotes adaptive range MOGA (ARMOGA) in this study.

1. Particle Swarm Optimization

The PSO method evolved from a simple simulation model of the movement of social groups such as birds and
fish, in which it was observed that local interactions underlie the group behavior and individual members
of the group can profit from the discoveries and experiences of other members. PSO is the algorithm using
plural points such as GA. PSO learns the personal best Pbest for exploiting the best results found sofa by
each of the particles, and the global best Gbest found so fa by the whole swarm for encouraging further
exploration and information sharing between the particles. In PSO, each solution (particle) xn in the swarm
of N particles is endowed using the following equations.

x(t+1)
n = x(t)

n + χv(t)
n + ε(t) (1a)

v(t+1)
n = wv(t)

n + c1r1(Pbestn − x(t)) + c2r2(Gbestn − x(t)) (1b)

where χ ∈ [0, 1] is a constriction factor which controls the velocity’s magnitude. w, c1, and c2 are parameters.
r1 and r2 are two uniformly distributed random numbers in the range [0, 1]. t denotes the searching cycle
which is similar to the generation in GA. n denotes each individual. x is the vector for design variable, and
v denotes the velocity vector. ε denotes perturbation. Although original PSO introduces a normal pertur-
bation, a Laplacian density p(ε) ∝ exp(−|ε|/0.1) is used in the present study. The Laplacian distribution
yields occasional large perturbations enabling wider exploration.

2. Multi-Objective PSO

The MOPSO is developed by using the method proposed by Alvarez-Banitez et al8. The determination
manner of Pbest and Gbest is essential, because the result of MO problem has plural optimum solutions.
Especially, the determination of Gbest is important. In this study, the manner is employed which determines
the Gbest based on the Pareto dominance concepts.

The non-dominated solutions for exploration are held as the archive A. Xa and Ax define as Xa ≡ {x ∈
X|a ≺ x} and Ax ≡ {a ∈ A|a ≺ x}, respectively. Gbest is determined by using Xa as follows;

Gbestn =

{
a ∈ A with probability ∝ |Xa|−1 if x ∈ A

a ∈ AX with probability ∝ |Xa|−1 otherwise
(2)

Pbest is updated unless the present position is dominated by the position of last generation.
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3. Operators for GA

The real-coded MOGA was used in this study because the value of design variables is directly employed for the
chromosome of individual. Regarding crossover, the blended crossover method (BLX-α)15, and the principal
component analysis-BLX-α method (PCA-BLX-α)16 were used, and then the quarter of the population size
was assigned to each crossover method. The other population was assigned to PSO. When the mutation rate
is high, an EA search is close to a random search and results in slow convergence. Therefore, the mutation
rate was defined by using the inverse of the number of design variable in this study.

E. Evaluation Method

The present exploration system prepared two evaluation modules for aerodynamics, structures, and boom
noise. As the structures module used the result of aerodynamic evaluation, these phases were carried out one
by one. The master processing element (PE) managed PSO/GA, while the slave PEs computed aerostructural
evaluation processes. Slave processes did not require synchronization. It took roughly seven days at least to
evaluate one generation.

1. Aerodynamic Evaluation

In the present study, TAS-Code, parallelized unstructured Euler/Navier-Stokes solver using domain decom-
positions and message-passing interface (MPI) library, was employed to evaluate S · CDp

and S · CL. The
three-dimensional Euler equations were solved with a finite-volume cell-vertex scheme on the unstructured
mesh5. The Harten-Lax-van Leer-Einfeldt-Wada Riemann solver17 was used for the numerical flux compu-
tations. The Venkatakrishnan’s limiter18 was applied when reconstructing the second order accuracy. The
lower-upper symmetric-Gauss-Seidel implicit scheme19 was applied for time integration.

Euler computations were performed under subsonic and supersonic flight conditions, respectively. Taking
advantage of the parallel search in PSO/GA, the present optimization was parallelized. Moreover, the CFD
computation was also parallelized on the scalar machine.

The following Prandtle-Hoerner’s equation was used for the estimation of S · CDf to avoid huge com-
putational time due to Navier-Stokes computation.This empirical equation is often employed for practical
designs in business.

CDf
= Cf (Re,M) · Swet

Sref

=
0.455

(log10 Re)2.58
· (1 + 0.15M2)−0.58 · Swet

Sref

(3)

2. Structural Evaluation

In the present MDE system, structural optimization of a wing stacking sequences of laminated composites
was performed to realize minimum Wc with constraints of strength and vibration requirements. The vibration
requirement was defined instead of flutter one. Given the wing outer mold line for each individual, finite
element model (FEM) was generated from aerodynamic evaluation result of supersonic cruising condition,
such as coordinates, pressure coefficient, and normal vector (x, y, z, Cp, xnormal, ynormal, and znormal) shown
in Fig. 3. The strength and vibration characteristics were evaluated by using the commercial software MSC.
NASTRANTM. Wing had inner and outer boards. Inboard wing was composed of multi-frame structure,
such as frame, rib, and spar. Outboard wing compounded from full-depth honeycomb sandwich structure.

The design variables were six, such as stacking sequences (fiber angle of a ply θ and number of ply n)
of the skin in outboard wing, the skin in inboard wing, and the frames in inner wing. θ was defined as
symmetrical stacking [0/θ/−θ/90]ns. It is notable that n is set on ∀n ∈ N ≤ 25. When n was greater than
25, the individual cannot fulfill the structural requirements. A rank has penalty in the optimizer. Note that
θ was set on 15, 30, 45, 60, and 75degs.

First, strength analysis was carried out until six design variables fulfill the strength requirement at
each node of FEM mesh on each stacking sequences. Then, oscillation analysis was performed using the
combinations of the design variables satisfied with the strength requirement until they fulfill the vibration
requirements (greater than 8Hz for bending-first-mode and also greater than 50Hz for twist-first-mode). The
computational condition was set on the symmetrical maneuver +6G and the margin of safety was set on
1.25. The speed of sound and the air density was set under the condition of altitude of 16km.
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3. Sonic Boom Evaluation

The computer-aided design(CAD)-based Automatic Panel Analysis System (CAPAS) was used to evaluate
Iboom. CAPAS was a conceptual aerodynamic design tool in JAXA. This tool comprised four design processes
as follows; 1) geometry definition of airplane component, 2) combination of all components in an airplane
configuration using an application program interface (API) for the CATIATMV4, 3) generation of panel
and aerodynamic analysis using panel method, 4) sonic-boom analysis using a modified linear theory. As
an aerodynamic evaluation module in CAPAS was a low-fidelity because a geometry was inaccurate due to
rough computational panel, the aerodynamic performance in CAPAS was used only to evaluate Iboom.

III. Optimization Results

The population size was set on 16. It took roughly six hours of CPU time of JAXA’s super computer sys-
tem 20 PEs for an Euler computation. The total evolutionary computation of 12 generations was performed,
and 75 non-dominated solutions were obtained. Here, the derived non-dominated solutions are focused be-
cause a compromise solution is selected from them. The evolution might not converge yet. However, the
result was satisfactory because several non-dominated solutions achieved improvements over the 0th shape.
Furthermore, sufficient number of solutions was searched so that data mining of the design space can be
performed. This can provide useful knowledge for designers.

Figure 4 shows the non-dominated solutions projected on two-dimensional plane between two objectives.
This figure indicates the following tradeoff information. There are tradeoffs between S · CL and Wc. Es-
pecially, there are severe tradeoffs between S · CDp and S · CL, and S · CDf

and S · CL. Whereas, there is
no tradeoff between S · CDp and S · CDf

. The relations are obscure between the other combinations of the
objective functions. This figure shows that the 0th shape is one of the non-dominated solutions, and it is
on the edge of the objective-function space. Because two values of design variables to describe 0th shape,
such as the span length and sweepback angle of inboard wing, are near the edge of the defined design space.
As several non-dominated fronts are regrettably obscure, data mining deals with the correlations among the
objectives.

A. Comparison among the Extreme Solutions regarding the Objective Functions

There are three extreme solutions, which means the champions for each objectives, named as non-dominated
solution(NDS) A, B, and C. NDS-A denotes an individual which S ·CDp and Iboom were minimized. NDS-B
is an individual which S ·CDf

and Wc were minimized. NDS-C is an individual which S ·CL was maximized.
It is notable that the individuals without fulfillment of strength/vibration requirements were eliminated
from the candidates. The planform shapes are shown in Fig. 5, and their geometrical characteristics are
summarized in Table 2. Note that AR, Swetted

wing , and Nply denote the aspect ratio, wetted area of one-side
wing, and number of ply (for the skin of outboard wing, the skin of inboard wing, and the multi frames of
inboard wing), respectively. AR defines b2/(Sref · 2), b is a full span length.

NDS-A shows that a large swept angle of leading edge holds the front boom. Therefore, the minimizations
of S · CDp and Iboom are achieved, simultaneously. But, because the eigenvalue of twist first mode becomes
low, the ply should be stacked for the skin of inboard wing. NDS-B reveals that the smallest wing area
achieves the minimization of S · CDf

, and the smallest wing area and the low swept angle of leading edge
realize the minimization of Wc. But, as the angle of attack at supersonic cruising condition must be high
to secure the target CL, the separation might be triggered. Furthermore, high landing speed must be also
secured because of a small wing area. NDS-C shows that a large wing area achieves the maximization of lift
at subsonic condition. But, the drags and Wc become high due to the large wing area. The wing planforms
of these solutions indicate that the wing area gives strong effects on the objective functions in this study.
The shapes of these extreme solutions show that the optimizer can explore to the edge of the design space,
efficiently. Consequently, the extreme solutions cannot design practically, and a compromise geometry will
be decided using the knowledge in the design space.

IV. Data Mining

Although a design optimization is important for engineering, the most significant point is the extraction
of the knowledge in design space. The results obtained by MO optimization are not a sole solution but an

6 of 19

American Institute of Aeronautics and Astronautics Paper 2007-4167



(a) S · CDp vs. S · CDf (b) S · CDp vs. S · CL

(c) S · CDp vs. Iboom (d) S · CDf
vs. S · CL

(e) S · CDf
vs. Iboom (f) S · CL vs. Iboom

(g) S · CL vs. Wc
(h) Iboom vs. Wc

Figure 4. Derived non-dominated solutions on two dimensional planes between the objective functions. The
orange arrow denotes the optimum direction.
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(a) NDS-A (b) NDS-B (c) NDS-C

Figure 5. Comparison among the wing planform of the extreme solutions colored by Cp distribution on CFD
and displacement on CSD.

Table 2. Geometrical characteristic values of the extreme solutions.

Individual CLdesign αcruise[deg] AR Swetted
wing [m2] Nply

out skin/Nply
in skin/Nply

in rib

NDS-A 0.1300 3.94 2.92 10.81 16/88/32
NDS-B 0.3103 6.85 2.86 4.15 8/24/8
NDS-C 0.0632 1.76 3.08 22.52 56/48/56

optimum set. That is, as multi-objective optimization result is insufficient information for practical design
because designers need a conclusive shape. However, the result of MO optimization can be accounted as a
hypothetical design database. Data mining as a post-process for an optimization is essential to obtain the
fruitful design knowledge efficiently20–22. In the present study, functional analysis of variance (ANOVA) and
self-organizing map (SOM) were used for data mining technique.

A. Analysis of Variance

ANOVA23 is one of the data mining techniques showing the effect of each design variable to the objective and
the constraint functions in a quantitative manner. ANOVA uses the variance of the model due to the design
variables on the approximation function. By decomposing the total variance of model into the variance due
to each design variable, the influence of each design variable on the objective function can be calculated. The
decomposition is accomplished by integrating out the variables of model ŷ. ŷ denotes an estimated value of
unknown function y. The total mean (µ̂total) and the variance (σ̂2

total) of model ŷ are as follows:

µ̂total ≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxn (4a)

σ̂2
total =

∫
· · ·

∫
[ŷ (x1, x2, · · · , xn) − µ̂total]

2
dx1dx2 · · · dxn (4b)

The main effect of variable xi and the two-way interaction effect of variable xi and xj are given as follows:

µ̂ (xi)

≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxi−1dxi+1 · · · dxn

− µ̂total

(5)
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µ̂i,j (xi, xj)

≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxn

− µ̂i (xi) − µ̂j (xj) − µ̂total

(6)

µ̂(xi) and µ̂i,j(xi, xj) quantify the effect of variable xi and interaction effect of xi and xj on the objective
function. The variance due to the design variable xi is obtained as follows:

σ̂2
xi

=
∫

[µ̂i (xi)]
2
dxi (7)

The proportion of the variance P due to design variable xi to total variance of model can be expressed by
dividing Eq. (7) with Eq. (4b).

P =
σ̂2

xi

σ̂2
total

=

∫
[µ̂i (xi)]

2
dxi∫

· · ·
∫

[ŷ (x1, x2, · · · , xn) − µ̂total]
2
dx1dx2 · · · dxn

(8)

This value indicates13 the effect of design variable xi on the objective function ŷ.

B. Self-Organizing Map

1. General SOM Algorithm

SOM24 is an unsupervised learning, nonlinear projection algorithm from high to low-dimensional space. This
projection is based on self-organization of a low-dimensional array of neurons. In the projection algorithm,
the weights between the input vector and the array of neurons are adjusted to represent features of the high
dimensional data on the low-dimensional map. The close two patterns are in the original space, the closer is
the response of two neighboring neurons in the low-dimensional space. Thus, SOM reduces the dimension
of input data while preserving their features.

2. Batch-SOM

In this study, SOMs are generated by using commercial software Viscovery R© SOMine 4.0 plusa produced
by Eudaptics GmbH. Although SOMine is based on the general SOM concept and algorithm, it employs an
advanced variant of unsupervised neural networks, i.e., Kohonen’s Batch SOM25,26. The algorithm consists
of two steps that are iterated until no more significant changes occur: search of the best-matching unit ci

for all input data {xi} and adjustment of weight vector {mj} near the best-matching unit. The Batch-SOM
algorithm can be formulated as follows:

ci = arg min ‖xi − mj‖ (9a)

m∗
j =

∑
i

hjcixi∑
i

hjci

(9b)

where m∗
j is the adjusted weight vector. The neighborhood relationship between two neurons j and k

is defined by the Gaussian-like function hjk = exp(−d2
jk/r2

t ). Where djk denotes the Euclidean distance
between the neuron j and the neuron k on the map, and rt denotes the neighborhood radius which is
decreased with the iteration steps t.

The standard Kohonen algorithm adjusts the weight vector after all each record is read and matched.
On the contrary, the Batch-SOM takes a ‘batch’ of data (typically all records), and performs a ‘collected’
adjustment of the weight vectors after all records have been matched. This is much like ‘epoch’ learning

a“Eudaptics” available online at http://www.eudaptics.com [cited 16 June 2004].
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in supervised neural networks. The Batch-SOM is a more robust approach, since it mediated over a large
number of learning steps. In the SOMine, the uniqueness of the map is ensured by the adoption of the
Batch-SOM and the linear initialization for input data. Much like some other SOMs27, SOMine creates a
map in a two-dimensional hexagonal grid. Starting from numerical, multivariate data, the nodes on the grid
gradually adapt to the intrinsic shape of the data distribution can be read off from the emerging map on the
grid. The trained SOM is systematically converted into visual information4,20.

3. Cluster Analysis

Once SOM projects input space on a low-dimensional regular grid, the map can be utilized to visualize and
explore properties of the data. When the number of SOM units is large, to facilitate quantitative analysis
of the map and the data, similar units need to be grouped, i.e., clustered. The two-stage procedure —
first using SOM to produce the prototypes which are then clustered in the second stage — was reported to
perform well when compared to direct clustering of the data27.

Hierarchical agglomerative algorithm is used for clustering here. The algorithm starts with a clustering
where each node by itself forms a cluster. In each step of the algorithm two clusters are merged: those with
minimal distance according to a special distance measure, the SOM-Ward distance. This measure takes into
account whether two clusters are adjacent in the map. This means that the process of merging clusters is
restricted to topologically neighbored clusters. The number of clusters will be different according to the
hierarchical sequence of clustering. A relatively small number will be chosen for visualization, while a large
number will be used for generation of codebook vectors for respective design variables.

V. Data-Mining Results

Although SOM looks down the global knowledge in design space like a bird-eye view, it has a disadvantage
that it is possible to overlook the design knowledge due to a large number of design variables. In this study,
data mining by SOM was performed after key design variables were addressed by ANOVA.

A. Knowledge by ANOVA

The variance of the design variables and their interactions by ANOVA are shown in Fig. 6. Their proportions
are shown which were larger than 1% to the total variance. It is notable that ANOVA was analyzed to except
a individual with great value leap for Iboom, and 16 individuals without fulfillment of structural requirements.
The symbol ‘dv’ denotes design variable and ‘-’ means the interaction between two design variables.

Figure 6a shows that dv25, dv14, dv1, and dv6 give the effect on S ·CDp . Dv25 describes the leading-edge
bluntness at root. As the wing thickness at root is largest due to the long chord length, the leading-edge
bluntness at root is most effective on S ·CDp . Dv14 represents the height of rearward camber at root. Dv14
decides the angle which the flow takes on the rearward wing. As the curvature of camber line becomes large
when the value of dv14 becomes high, S · CDp increases. Dv1 describes the inboard span length. As wetted
area increases when dv1 becomes high, S · CDp

increases.
Figure 6b shows that dv1, dv2, and dv4 give the effects on S · CDf

. It reveals that the span length and
the chord length at kink are effective to S · CDf

. In this study, as the Prandtle-Hoerner’s equation gives
S · CDf

, it becomes high when the individual has a large wetted area. Moreover, in this study, the chord
length at root does not fluctuate largely. The design variables represented a large chord length at kink give
effects on the increase of the wing area.

Figure 6c reveals that dv1 and dv2 give effects on S · CL. The span length of inboard wing decides the
S · CL. The mechanism that S · CL increases due to the span length is similar to that of S · CDf

increase.
Figure 6d shows that dv6 and dv43 give effects on Iboom. The dv6 describes the leading-edge sweepback

angle of inner wing. As the Iboom at the front boom becomes weak when this angle becomes large, the total
of Iboom thus decreases.

Figure 6e shows that dv25 and dv16 give effects on Wc. Dv25 describes the leading-edge bluntness at root.
As the wing becomes thin near the leading edge when leading edge has sharpness, the strength becomes weak
and also the natural frequency becomes low. Since the number of ply should increase to fulfill the structural
requirements, Wc increases. Dv16 describes the frontward camber height at kink. The curvature of camber
line multiplies strength and increases natural frequency. Camber height gives effect on Wc
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(a) S · CDp (b) S · CDf

(c) S · CL (d) Iboom

(e) Wc

Figure 6. Proportion of design-variable influence for the objective functions using ANOVA.
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B. Knowledge by SOM

The resulting 75 non-dominated solutions have been projected onto the two dimensional map of SOM. Figure
7 shows the colored SOM by the objective functions with 11 clusters taking the five objective functions into
consideration. Figure 7a shows that left area collects the designs with high S · CDp , and also right area
collects the designs with low S · CDp

. Figure 7b shows that upper left area collects the designs with high
S ·CDf

, and also upper right area collects the designs with low S ·CDf
. Figure 7c shows the similar coloring

pattern compared with Fig. 7b. Figure 7d shows that lower right area collects the designs with high Iboom.
There is no clear pattern regarding low Iboom. Figure 7e shows that upper left area collects the designs
without fulfillment of the structural requirements, and also right area collects the designs with low Wc. This
result is summarized in Fig. 8.

Figure 7 reveals the following tradeoff and correlation information. There is no tradeoff between S ·CDp

and S ·CDf
. On the other hand, there is strong tradeoffs between S ·CL and S ·CDp , and S ·CL and S ·CDf

.
There is no correlation between Iboom and the other objectives, that is, Iboom does not depend on the other
objectives in the design space. In this study, there is no tradeoff between S · CDp and Iboom because the
fuselage is fixed. The nose geometry is generally effective to the tradeoff between them. There is correlation
among Wc and S ·CDp

, S ·CDf
, and S ·CL when Wc becomes low. Moreover, since the cluster on the upper

right corner in Fig. 7 has low values of all objectives, there is a sweet spot when S · CL is tolerable. But,
the primary objective of this MDO is to improve the lift performace at low speed. The knowledge regarding
this sweet sport suggests that the other four objectives are corrupted compared with 0th shape even when
any compromise solution improved lift performance at low speed is selected.

Figure 9 shows the SOMs colored by CDp and CL. Figure 9a shows that upper right area collects the high
CDp , and upper center area and lower right areas collect the low CDp . Figure 9b shows that lower left area
collects high CL, and right area collects low CL, however, the color pattern is unclear. As the comparison
among Fig. 7a, 7c, and Fig. 9 shows the different color pattern, the optimum direction disagrees between
CDp and S ·CDp , and between CL and S ·CL. When S ·CDp and S ·CL is considered, the optimum direction
is dominated by wing area.

The SOMs can be also contoured by 58 design-variable values. Figure 10 shows the SOMs colored by
the characteristic design variables addressed by ANOVA. These colored SOMs reveal ‘how’ design variables
operate on the objective functions. Figure 10a shows that left area collects high dv1. Also, upper right area
collects low dv1. Therefore, when the span length of inboard wing becomes high, S ·CDp , S ·CDf

, and S ·CL

become high, and also when it becomes low, S ·CDp , S ·CDf
, S ·CL, and Wc become low. Figure 10b shows

that upper left area collects high dv2. Therefore, when the span length of outboard wing becomes high,
S · CDf

, S · CL, and Wc becomes high. As Fig. 10c shows that upper right area collects high dv6, S · CDp

and Iboom becomes low when the sweepback angle of inboard wing becomes high. Figure 10d shows that left
area roughly collects high dv14, but this color pattern is insufficient to mention the correlation. Therefore,
the rearward camber height at root does not have a large effect on S · CDp . Figure 10e shows that upper
center area collects low dv16. Therefore, Wc tends to become high when the frontward camber height at kink
becomes low. Figure 10f shows that dv25 does not fluctuate so much and there is no clear contour pattern.
Therefore, the leading-edge bluntness at root does not give large effect on the objectives. As Fig. 10g shows
that there is incoherent color pattern, there is no correlation between the leading-edge bluntness at tip and
Iboom.

The color patterns between two or more SOMs give the qualitative effects. SOM needs to be interpreted
while the physical meaning of design variables is considered.

C. Decision of a Compromise Solution

The 75 non-dominated solutions are extracted using SOM to determine a compromise solution. The ap-
plicable solutions to the following conditions are firstly excluded from 75 non-dominated solutions; 1) The
structural requirements are not fulfilled, 2) S · CL is low, or wing area is low (this means the constraint
for the landing speed.), 3) S · CDp

and S · CDf
are impractically large. As a result of this operation, 24

non-dominated solutions as the practical designs are sorted. The SOM is re-generated using derived 24
non-dominated solutions taking the five objective functions into consideration. The derived SOM with the
top views of the sorted 24 non-dominated solutions and its colored maps by the objectives are shown in
Fig. 11. The compromise solution is determined from these individuals taking the balance of the five objec-
tive functions and the low-boom competence as the primary objective of S3TD into consideration on SOM.
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(a) S · CDp
(b) S · CDf

(c) S · CL (d) Iboom

(e) Wc

Figure 7. SOMs colored by the objective functions taking the five objective functions into consideration.

Figure 8. SOM of the derived non-dominated solutions in the five dimensional objective function space.
Shadow region denotes that there is impractical individuals for design.
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(a) CDp (b) CL

Figure 9. SOMs colored by the aerodynamic characteristics.

D. Comparison between 0th Shape and Selected Compromise Solution

The comparison of the planform between the 0th shape and the selected compromise solution (called as
‘compromise’) is shown in Fig. 12. Also, their airfoils of 0th and compromise shapes near the junction
relative to the fuselage, kink, and tip are shown. It is notable that 0th shape has no twist and its airfoil is
described by NACA64A series. The thickness ratios are respectively defined as 6% at root, 5% at kink, and
3% at tip. The installed angle of wing is −0.5deg relative to the fuselage. 0th shape design was focused on
reducing sonic boom. Their characteristics and performance are summarized in Tables 3 and 4. As S · CL

is maximization objective, compromise has a larger wing area than that of 0th shape. And, inner wing area
of compromise becomes large to secure the structural strength. The sweepback angle has more gentle not
to give the effects on Iboom so that the wing area and structural strength are also secured. But, the chord
length near kink becomes short to achieve low Wc and S · CDf

. Therefore, the number of ply increases to
augment the eigen frequency. Compromise has the supersonic leading edge near root to reduce the effect on
Iboom of the front boom. Also, compromise has the blunt leading edge near kink to improve the strength,
eigen frequency, and subsonic aerodynamic performance. Data-mining results show that the sharp leading
edge near tip gives effect on Iboom. But, the wing area gives strong effect on the objectives. Therefore, the
knowledge regarding the airfoil shape is unreliable.

The location in the design space for 0th shape and compromise is shown in Fig 4. 0th shape has low
S · CDp and S · CL due to a small wing area, and it locates on the edge in the design space. Also, it has
low Iboom due to focusing on low-boom design. Compromise locates low Iboom region as well as compromise
of the other objectives. These location in Fig. 4 shows the aerodynamic performance strictly depends on
the wing area. Figure 13 shows the spanwise distributions of CL and CD, and twist angle for 0th and
compromise shapes. This figure shows that the twist angle of compromise on outer wing is large. That is,
outboard is not worked as wing, and down force occurs. CD becomes still larger due to inverted camber line
near the kink. As data-mining results reveal that the design variables regarding twist down and inverted
camber line give no effects on the objective functions, the re-design of these design variables can improve
the aerodynamic performance without corrupting the other objectives. The knowledge regarding the airfoil
shape is insufficient. The primary reason is that its effect is weak to the aerodynamic performance compared
with the wing planform. The secondary reason is that only a small number of the generations was performed.

The boom intensity as the primary objective function is finally compared between 0th and compromise.
Figure 14 shows their ground pressure signatures. Although Iboom performance of 0th shape is better, com-
promise also keeps non-N-shaped signature to restrain the initial peak. Compromise has better performance
of S · CL for the constraint of landing speed as well as the restraint of Iboom. In this study, the rearward
boom intensity cannot be discussed because the assumed fuselage-wing configuration ignores an engine na-
celle and vertical/horizontal tail wings. But, CFD visualization of Cp distribution on symmetrical plane
shown in Fig. 15 reveals that shock wave occurs in the vicinity of wing trailing edge. It is necessary that the
full configuration is optimized to design the geometry restrained rearward boom intensity and to obtain the
design knowledge regarding cross section shape.
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(a) dv1 (b) dv2

(c) dv6 (d) dv14

(e) dv16 (f) dv25

(g) dv43

Figure 10. SOMs colored by the characteristic design variables indicated by ANOVA.
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S · CDp S · CDf S · CL Iboom Wc

Figure 11. Derived SOM with the top views of sorted 24 individuals and their colored maps by the objective
functions.

(a) 0th shape (b) Compromise solution

Figure 12. Comparison of wing shape colored by Cp and displacement distributions, and Cp distributions near
the junction relative to the fuselage, kink, and tip.
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(a) 0th shape (b) Compromise solution

Figure 13. Comparison of the spanwise distributions of CL, CD, and the twist angle.

Figure 14. Comparison of ground pressure signatures.

(a) 0th shape (b) Compromise solution

Figure 15. Comparison of pressure distributions on symmetrical plane.
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Table 3. Comparison of geometrical characteristic values between 0th shape and compromise solution.

Individual CLdesign αcruise[deg] AR Swetted
wing [m2] Nply

out skin/Nply
in skin/Nply

in rib

0th shape 0.132 2.33 3.81 10.41 8/72/24
compromise 0.0898 3.61 3.18 15.68 56/88/24

Table 4. Comparison of the objective and aerodynamic-performance values between 0th shape and compromise
solution.

Individual S · CDp (CDp) S · CDf
S · CL (CL) Iboom Wc

0th shape 0.0656 (0.0118) 0.0482 3.896 (0.7029) 0.615 88.74
compromise 0.1777 (0.0218) 0.0584 4.719 (0.5794) 0.676 214.58

VI. Conclusions

The multidisciplinary design exploration for S3TD wing has been performed using optimization and data
mining taking five objective functions regarding aerodynamics, structures, and boom noise into consideration
on PSO/GA hybrid method. Consequently, 12 generation was evolved and 75 non-dominated solutions were
acquired. The knowledge in the design space was obtained regarding the tradeoffs and correlation among
the objective functions. Furthermore, the particular design variables, which give effects on the objective
functions, was revealed. The design knowledge is essential for successful decision of a compromise solution.
The selected compromise solution improves in lift performance as well as the restraint of sonic boom intensity.
Since wing area and planform shape give strong effects on the objective functions due to the definition of the
present optimization problem, a next-step MDO will be carried out for practical design of wing cross-section
geometry.
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