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The data mining has been performed for the aerodynamic design optimization result of
two-stage-to-orbit reusable launch vehicle flyback booster wing. Three data mining tech-
niques were used such as self-organizing map, functional analysis of variance, and rough set
theory. The optimization problem had four aerodynamic objective functions and 71 design
variables regarding wing shape. The optimization obtained the result as the hypothetical
design database with 302 all solutions including the 102 non-dominated solutions. Conse-
quently, the knowledge in the design space was acquired regarding the correlation between
objective functions, and the influence of the design variables to the objective function, for
non-dominated and all evaluated solutions, respectively. The features of three data mining
techniques were revealed. Although the combination among three techniques discovered
detailed design knowledge, self-organizing map was especially a key technique for knowledge
discovery. Moreover, design knowledge from all solutions conserved the information from
non-dominated solutions. Data mining was essential to solve multi-objective optimization
problem.

I. Introduction

Although design optimization problem is an important manner for engineering, the most significant
point is the extraction of the knowledge in design space from optimization result. The result obtained by

multi-objective optimization problem using evolutionary algorithm is not a sole solution but a set of optimum
solutions. That is, as multi-objective optimization result is only figure enumeration, there is insufficient
information regarding design. However, that set of optimum solutions can be considered hypothetical design
database. Recently, data mining technique is applied for this hypothetical design database to obtain the
fruitful design knowledge efficiently1–3. As data mining application is developing field, there is no effective
manner.

In this study, three data mining techniques as self-organizing map (SOM), functional analysis of variance
(ANOVA), and rough set theory were applied to the aerodynamic design optimization result regarding
a two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) flyback booster. A space transport system
with a substantially reduced cost is needed so that space can be utilized in many more fields. One of
the focused research is the RLV system, suggested as a replacement for the present expendable launch
vehicle system. Because of the difficult assignments such as a higher performance propulsion system and
greater reduction of its structure weight, current proposals for the introduction of reusable components in
space transportation involve the TSTO configuration with winged flyback booster powered by liquid rocket
engines for vertical takeoff and horizontal landing. As the wing geometry of flyback booster generates the
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aerodynamic performance, it is the most important element. Therefore, the correlations among aerodynamic
characteristics, such as lift, drag, and moment, are significant design information. Moreover, it is important
to find design variables sensitive to the aerodynamic performance; that is, acquisition of knowledge in the
design space is essential to improve the aerodynamic performance of winged flyback booster. The objective
of this study is the acquisition of beneficial knowledge in the design space to apply data mining which is an
emerging area of computational intelligence.

II. Design Optimization Problem

The reference mission of the TSTO RLV was to transport a 10-t payload into low earth orbit, similarly to
the present H-IIA mission. The booster sizing was obtained by preliminary computation using the empirical
equations developed by the Japan Aerospace Exploration Agency. The fuselage geometry was fixed to a
given size and only the wing shape was allowed to be optimized in the present parameterization system.

Trajectory analysis around a typical TSTO configuration based on the present mission showed that the
separation of the booster and orbiter took place at roughly Mach 3. Then the flyback booster turned over,
slowed down, cruised at transonic speeds, and landed at subsonic speed. Note that the major part of its
cross-range was in the transonic region. The considered four objective functions were to minimize the shift
of aerodynamic center between supersonic and transonic conditions (F1), transonic CMp (F2) and transonic
CD (F3), as well as to maximize subsonic CL (F4).

The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras
one-equation model on unstructured hybrid mesh was employed in aerodynamic evaluation. Adaptive range
multi-objective genetic algorithm (ARMOGA) was used as an optimizer.

The design variables were related to planform, airfoil shape, wing twist, and position relative to the
fuselage. A wing planform was determined by five design variables. A kink was place on the leading edge.
Airfoil shapes were defined at the wing root, kink, and tip using thickness distributions and camber lines.
The thickness distributions were described by Bézier curves using 11 control points and linearly interpolated
in the spanwise direction. The camber line distributions were parameterized using Bézier curves with four
control points and incorporated linearly in the spanwise direction. Wing twist was refined using B-splines
with six control points. The position of the wing root relative to the fuselage was parameterized by x and z
coordinates of the leading edge, angle of attack, and dihedral angle. The entire wing shape was thus defined
using 71 design variables. Once a wing was defined, the junction line between the wing and fuselage was
extracted and the final wing-fuselage geometry was derived by neglecting part of the wing inside the fuselage.

As the population size was set to eight. The total evolutionary computation of 40 generations was
performed. Consequently, a total of 102 non-dominated solutions extracted from 302 all solutions of 40 gen-
erations were obtained. Figure 1 shows the two two-dimensional projections of the non-dominated solutions
to better understand the tradeoffs among the four objective functions. The optimum values of F1 and F2 are
zero, and the non-dominated solutions reached the origin, i.e., the optimum values of F1 and F2 in Fig. 1a.
As the plots in Fig. 1a are the non-dominated solutions for not two but four objective functions, there is a
tradeoff surface spread of that the non-dominated solutions near the origin. Figure 1a shows that there is
no tradeoff between the shift of aerodynamic center and the transonic CMp. The Pareto front can be seen
clearly between F3 and F4 in Fig. 1b. Thus, Figure 1b indicates that there is a marked tradeoff between
the transonic drag and the subsonic lift. This result indicated that a high lift device may be needed for an
RLV booster for landing, similar to aircraft. The Pareto front for F2 attained the optimum front. However,
the Pareto front for F3 did not reach CD of zero. Thus, there is a slight tradeoff between F2 and F3, and
the transonic drag can be improved while the transonic CMp increases. Moreover, the Pareto front for F1

attained the optimum front. However, the Pareto front for F4 did not have an apparent limit. Therefore,
there was a slight tradeoff between F1 and F4. This indicated that shift and transonic CMp optimized
simultaneously, while the subsonic lift was reduced slightly4.
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(a) between F1 and F2 (b) between F3 and F4

(c) between F2 and F3 (d) between F1 and F4

Figure 1. Derived non-dominated solutions on two-dimensional plane.

III. Data Mining Techniques

A. Self-Organizing Map

1. General SOM Algorithm

SOM5 is an unsupervised learning, nonlinear projection algorithm from high to low-dimensional space. This
projection is based on self-organization of a low-dimensional array of neurons. In the projection algorithm,
the weights between the input vector and the array of neurons are adjusted to represent features of the high
dimensional data on the low-dimensional map. The close two patterns are in the original space, the closer is
the response of two neighboring neurons in the low-dimensional space. Thus, SOM reduces the dimension
of input data while preserving their features.

2. Batch-SOM

In this study, SOMs were generated by using commercial software Viscovery R© SOMine 4.0 Plus6 produced
by Eudaptics GmbH. Although SOMine is based on the general SOM concept and algorithm, it employs an
advanced variant of unsupervised neural networks, i.e., Kohonen’s Batch SOM7,8. The algorithm consists of
two steps that are iterated until no more significant changes occur: search of the best-matching unit ci for
all input data {xi} and adjustment of weight vector {mj} near the best-matching unit. The Batch-SOM
algorithm can be formulated as follows:

ci = arg min ‖xi − mj‖ (1a)

m∗
j =

∑
i

hjcixi∑
i

hjci

(1b)
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where m∗
j is the adjusted weight vector. The neighborhood relationship between two neurons j and k is

defined by the following Gaussian-like function:

hjk = exp

(
−

d2
jk

r2
t

)
(2)

where djk denotes the Euclidean distance between the neuron j and the neuron k on the map, and rt denotes
the neighborhood radius which is decreased with the iteration steps t.

The standard Kohonen algorithm adjusts the weight vector after all each record is read and matched.
On the contrary, the Batch-SOM takes a ‘batch’ of data (typically all records), and performs a ‘collected’
adjustment of the weight vectors after all records have been matched. This is much like ‘epoch’ learning
in supervised neural networks. The Batch-SOM is a more robust approach, since it mediated over a large
number of learning steps. In the SOMine, the uniqueness of the map is ensured by the adoption of the
Batch-SOM and the linear initialization for input data. Much like some other SOMs9, SOMine creates a
map in a two-dimensional hexagonal grid. Starting from numerical, multivariate data, the nodes on the grid
gradually adapt to the intrinsic shape of the data distribution can be read off from the emerging map on the
grid. The trained SOM is systematically converted into visual information10,11.

B. Analysis of Variance

ANOVA12 is one of the data mining techniques showing the effect of each design variable to the objective and
the constraint functions in a quantitative manner. ANOVA uses the variance of the model due to the design
variables on the approximation function. By decomposing the total variance of model into the variance due
to each design variable, the influence of each design variable on the objective function can be calculated.
The decomposition is accomplished by integrating out the variables of model ŷ. The total mean (µ̂total) and
the variance (σ̂2

total) of model ŷ are as follows:

µ̂total ≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxn (3a)

σ̂2
total =

∫
· · ·

∫
[ŷ (x1, x2, · · · , xn) − µ̂total]

2
dx1dx2 · · · dxn (3b)

The main effect of variable xi and the two-way interaction effect of variable xi and xj are given as follows:

µ̂ (xi)

≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxi−1dxi+1 · · · dxn

− µ̂total

(4)

µ̂i,j (xi, xj)

≡
∫

· · ·
∫

ŷ (x1, x2, · · · , xn) dx1dx2 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxn

− µ̂i (xi) − µ̂j (xj) − µ̂total

(5)

µ̂(xi) and µ̂i,j(xi, xj) quantify the effect of variable xi and interaction effect of xi and xj on the objective
function. The variance due to the design variable xi is obtained as follows:

σ̂2
xi

=
∫

[µ̂i (xi)]
2
dxi (6)

The proportion of the variance P due to design variable xi to total variance of model can be expressed by
dividing Eq. (6) with Eq. (3b).

P =
σ̂2

xi

σ̂2
total

=

∫
[µ̂i (xi)]

2
dxi∫

· · ·
∫

[ŷ (x1, x2, · · · , xn) − µ̂total]
2
dx1dx2 · · · dxn

(7)

This value indicates13 the effect of design variable xi on the objective function ŷ.
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C. Rough Set Theory

The rough set theory introduced by Pawlak14,15 is based on the assumption that data and information is
associated with every objects of the universe of discourse16. Objects described by the same properly selected
information are indiscernible. The rough set theory can be used for a) reduction of data sets; b) finding
hidden data patterns; c) generation of decision rules. The rough set theory algorithms fall into a broad
area of machine learning such as a) neural networks; b) genetic algorithms; c) case-based learning; d) rule
induction; e) analytical learning.

A reduct is a minimal sufficient subset of features RED ⊆ A such that16,17:

a) R(RED) = R(A), i.e., RED produces the same classification of objects as the collection A of all
features;

b) for any feature f ∈ RED, R(RED − {f}) 6= R(A), i.e., a reduct is a minimal subset with respect to
the property a);

Core is the collection of features appearing in all reducts and is computed as the product of all reducts.
Pawlak introduced the concept of lower and upper approximations, which are useful for measuring of the

quality and accuracy of classification. Denote U a finite set of objects, Q as a finite set of features, and let
P ⊆ Q and Y ⊆ U .

The P -lower approximation of Y , denoted as PY , is the set of all elements of U , which can be certainly
classified as elements of Y based on the set of features P .

The P -upper approximation of Y , denoted as PY , is the set of elements of U , which can be possibly
classified as elements of Y based on the set of features P . The two definitions are expressed formally as
follows:

PY =
∪

X{X ∈ P ∗andX ⊆ Y } (8a)

PY =
∪

X{X ∈ P ∗andX ∩ Y 6= ∅} (8b)

where P ∗ is the family of all equivalence classes of indiscernibility relation P r on the set U . Two objects x
and y are indiscernible on the set of features P (xP ry) if r(x, q) = r(y, q) for every q ∈ P .

Equivalence classes of P r are called P -elementary sets in the set of objects (data set).
Approximation accuracy (AA) of a data set is the ratio of the total lower approximation for all decision

classes and the total upper approximation for all decision classes.
Boundary approximation is the difference between the upper and lower approximation.
Classification accuracy (CA) of a rule set is the ratio of the number of correctly classified objects from

the test set and all objects in the test set18.
Classification quality (CQ) of a feature set is the ratio of the number of objects in the lower approximation

and the total number of objects in the data set.
In some areas, a broader definition of accuracy is used19. Accuracy is defined as the total number of true

positives added to the total number of true negatives divided by the total number of patients studies20, i.e.,
accuracy= (A + D)/(A + B + C + D)). Based on the quadrant in Fig. 2, the following metrics are defined
in addition to accuracy:

• Sensitivity (true positive rate)= A/(A + C).
• Specificity (true negative rate)= D/(B + D).
• Positive predicted value= A/(A + B).
• Negative predicted value= D/(C + D).

Exact rule= an outcome corresponds to one or more different conditions.
Approximate rule= the same condition corresponds to more than one outcome. Note that exact rules are

generated for the set of objects in the lower approximation, while approximate rules are generated for the
boundary.

The most basic definitions introduced above are illustrated with the data set in Fig. 3 containing six
objects, four features, and the decision D. The classification quality of each single feature is as follows:
CQ(F1)=.167, CQ(F2)=0, CQ(F3)=0, CQ(F4)=.333. For example, for feature F1 object 3 can be uniquely
identified, therefore for F1=1, CQ(F1)=1/6=.167.
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The classification quality of selected pairs of features is as follows: CQ(F1, F2)=.5, CQ(F2, F3)=.667.
For example, for the feature set {F1, F2} three objects 1, 2, and 5 can be uniquely identified, therefore
CQ(F1, F2)=3/6=.5.

The classification quality of selected triple features is as follows: CQ(F1, F2, F3)=.667, CQ(F2, F3,
F4)=.667. For example, for the feature set {F1, F2, F3} four objects 1, 2, 3, and 5 can be uniquely
identified, therefore CQ(F1, F2, F3)=4/6=.667.

The classification quality of all features is CQ(F1, F2, F3, F4)=.667.
Reducts: {F1, F4}, {F3, F4}, {F3, F4}
Core: { ∅ }
The classification quality of the core: 0
Number of decision classes: 3 (D=0, 1, 2 in Fig. 3)
Number of atoms: 5

Class D = 0
Number of objects: 3
Lower approximation: 2
Upper approximation: 4
Approximation accuracy: 0.5
Class D = 1
Number of objects: 1
Lower approximation: 1
Upper approximation: 1
Approximation accuracy: 1
Class D = 2
Number of objects: 2
Lower approximation: 1
Upper approximation: 3
Approximation accuracy: .333

Based on the above values for the data set in Fig. 3
· The classification quality of all features is (2+1+1)/6=.667, and
· The approximation accuracy is (2+1+1)/(4+1+3)=.5.
The knowledge extracted from a data set may follow different formats, with the most typical being

decision tree, structured matrix, and decision rules. A typical format of a rule extracted from a data set is
as follows:

IF (Condition) THEN (Outcome) [Rule support, Rule coverage, Discrimination level] [List of support-
ing objects]

The following four exact and approximate rules have extracted from the set in Fig. 3.

In this study, ROSETTA21,22 was used.

Figure 2. Classification quadrant. Figure 3. Six object data set.
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Figure 4. Exact and approximate rules derived from the data set in Fig. 315.

IV. Data Mining Results

A. Design Space from Non-Dominated Solutions

The knowledge in the design space generated by the non-dominated solutions gives the correlation of tradeoff
between the objective functions, and the influence of the design variables for tradeoffs. As tradeoff informa-
tion is in the hypothetical design database formed by optimum solutions, data mining is the manner to give
designers tradeoff and design knowledge directly.

1. Knowledge by SOM

The resulting 102 non-dominated solutions have been projected onto the two-dimensional map of SOM.
Figure 5 shows the resulting SOM with 10 clusters taking the four objective functions into considering.
Figure 6 shows the SOMs colored by the four objective values, respectively. This color figures show the
SOM can be grouped as follows: Upper center area on SOM corresponds to the designs with the low shift of
aerodynamic center. Upper right corner corresponds to the designs with the low shift of aerodynamic center,
transonic CMp, and transonic CD. Lower right corner corresponds to the designs with the low transonic
CD. Lower left corner corresponds to the high shift of aerodynamic center, transonic CMp and transonic
CD. Left center region corresponds to the high subsonic CL.

The comparison between these colored SOMs reveals the tradeoffs and correlation between the objective
functions. Figures 6a and 6b show high-value regions for the shift of aerodynamic center and the transonic
CD coincide with each other. That is, when one objective function is increased, another objective function
is also increased strictly. Furthermore, because Fig. 6c is very similar to Fig. 6d, there is a severe tradeoff
between transonic CD and subsonic CL. This knowledge from SOM corresponds to the results of Fig. 1b.

SOM can be also contoured by 71 design-variable values. Figure 7a shows the SOM colored by the design
variable of the x coordinate of wing position to fuselage illustrated in Fig. 7b. Here, the x coordinate is held
on the fuselage. Higher values are located in the lower left corner in Figs. 6a and 6b. High values of the
shift of aerodynamic center, transonic CMp, and transonic CD are clustered in this area. Thus, this means
that the values of shift, transonic CMp and transonic CD become poorer when the wing position is behind
the fuselage.

The SOMs colored by the other characteristic design-variable values indicate the following knowledge.
An individual with lower rearward camber height at the wing tip has lower transonic CD. And, an individual
with higher rearward camber height at the kink has higher subsonic CL.

When the sweepback angle of the inboard wing becomes larger, the inboard wing acts as a strake. In
general, as a strake generates a vortex, it may be effective to increase lift due to the leading-edge separation.
However, the SOM colored by the design variable of the sweepback angle of the inboard wing shows that
there are mixed values in the area in which high values of the subsonic lift clustered. That is, the sweepback
angle of the inboard wing is not effective to increase CL. The CFD visualization, which is one individual
under subsonic flow condition where leading-edge separation is indicated by vortex centerlines, shows that
the primary vortex occurs not from a strake but from a kink corner on the leading edge. Hence, the strake
vortex is not essential to increase CL. The knowledge for the CFD visualization is also obtained from SOM.

As the SOMs colored by several other design variables have jumbled coloring, there design variables had
no effect in determining tradeoffs among the four objective functions. That is, it means that the sorting of
the design variables can be also performed from SOM.
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Figure 5. SOM of the non-dominated solutions in the four dimensional objective function space.

(a) shift of the aerodynamic center (b) transonic CMp

(c) transonic CD (d) subsonic CL

Figure 6. SOM colored by the four objective functions.
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(a) dv7 as the x coordinate of wing

position to fuselage

(b) dv22 as the camber height at tip

rearward

(c) dv18 as the camber height at kink

rearward

(d) sketch of dv7

(e) sketch of dv22 (f) sketch of dv18

Figure 7. SOM colored by important design variables and their sketches.

2. Knowledge by ANOVA

The variance of the design variables and their interactions are shown in Fig. 8. The proportion of them are
shown which is larger than 1% to the total variance. Note that ‘dv’ indicates design variable and ‘-’ indicates
interactions between two design variables.

The results reveal that dv7, which is the x coordinate of relative wing position to fuselage, gives the
largest effect on the objective function F1 and F2, and dv18, which is the rearward camber height at wing
tip, gives the largest influence for F3 and F4. When the wing position relative to the fuselage is changed,
the aerodynamic center is also changed, and this design variable varies the transonic CMp. In addition,
it is known that the camber line has the influence to CL and CD. The knowledge obtained by ANOVA
corresponds to general knowledge regarding aerodynamics.

When the results from ANOVA are compared with the results from SOM, the influence regarding dv7
and dv18 corresponds well. However, the results from ANOVA do not have the much influence regarding
dv22. In this case, dv22 with specific smaller value gives the influence to reduce the transonic CD. As the
decrease of dv22 value reduces the induced drag at tip, the result from SOM is appropriate. Therefore, it
is revealed that ANOVA cannot express the influence which only a design variable with a particular range
gives, and this defect can be avoided by using SOM simultaneously.

3. Knowledge by Rough Set Theory

The flow of data mining using rough set theory is summarized as follows.

1. Preparation of data
2. Dispersion of data
3. Reduct
4. Generation of rules
5. Filtering
6. Construction of rules
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 8. Proportion of design-variable influence for the objective functions using ANOVA.

The present data was generated from 102 non-dominated solutions, and had four objective functions and 71
design variables. Thus, the object U denotes the non-dominated solutions, the condition attribute C is the
design variables, and decision attribute D is the objective functions.

In the present study, each cluster classified by SOM was employed as decision attribute D. The name of
each cluster is summarized in Fig. 9. Table 1 shows the cluster names which give the effects on the objective
functions. Rough set theory made the rules regarding C1, C2, C5, and C10. Each rule is summarized in
Tables 2 to 5. These results show that a high value of dv7 has influence to the shift of aerodynamic center,
the characteristic value of dv7 has influence to transonic CMp, and dv18 has influence to transonic CD and
subsonic CL. As this knowledge corresponds to the results obtained by SOM and ANOVA, these rule is
generated appropriately. As ANOVA shows the total intensity in whole design space directly, it cannot show
the intensity in particular design space. For example, as Table 2 shows dv18 has a strong intensity to F1,
local region of dv18 has influence to the shift of aerodynamic center. SOM and ANOVA do not reach this
knowledge, and then these rules obtained by rough set theory are useful to narrow down to a detailed design
space.

However, physical analyses is needed to the rules generated by rough set theory, and it is difficult to
acquire the knowledge with flair. The order of rules does not correspond to the intensity of influence to the
objective functions. Moreover, a rule becomes accurate as many individuals with a decision attribute as it
generates. When a small number of individuals with characteristics satisfies a decision attribute, the rule
makes insufficient result. Rough set theory is effective manner, when there are many individuals to satisfy
a decision attribute, and also there are considerable design variables.

B. Design Space from All Solutions

The data mining for the design space generated by all evaluated solutions in optimization gives the knowledge
regarding the sensitivity of design variable to objective function, i.e., the direction for a better design. In
addition, it can reveal the sweet spot in the design space. That is, it shows the design precept for the problem
without severe tradeoffs.
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Figure 9. Cluster name on SOM from the non-dominated solutions in the four dimensional objective function
space.

Table 1. Features of the clusters with the extreme objective function values on SOM from non-dominated
solutions.

cluster particularity of performance improvement
C1 shift of aerodynamic center
C2 transonic CMp

C5 transonic CD

C10 subsonic CL

Table 2. Rules for C1 generated by rough set theory using non-dominated solution data.

rule number of data
dv7([0.462112,*)) AND dv61([*,0.978189)) → C1 17
dv7([0.462112,*)) AND dv69([*,-4.687520)) → C1 16
dv18([0.014534,*)) AND dv46([0.913306,*)) → C1 16
dv18([0.014534,*)) AND dv23([0.002630,*)) → C1 16
dv18([0.014534,*)) AND dv43([0.025468,*)) → C1 16
dv18([0.014534,*)) AND dv71([-6.687150,*)) → C1 16

dv22([*,-0.010476)) AND dv68([0.749406,0.799224)) → C1 15
dv15([0.172055,0.198975)) AND dv18([*,0.014534)) → C1 15

dv22([*,-0.010476)) AND dv46([0.913306,*)) → C1 14
dv22([*,-0.010476)) AND dv40([0.039847,0.047539)) → C1 14
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Table 3. Rules for C2 generated by rough set theory using non-dominated solution data.

rule number of data
dv11([0.259898,*)) AND dv20([0.070858,*)) AND dv23([0.001868,0.002630)) → C2 5

dv7([0.385122,0.462112)) AND dv10([*,2.145600)) AND dv46([0.889645,0.913306)) → C2 4
dv18([0.014534,0.044527)) AND dv43([0.023762,0.025468)) AND dv46([0.913306,*)) → C2 4

dv17([*,0.642730)) AND dv29([*,0.026988)) AND dv61([0.984426,*)) → C2 4
dv23([0.001868,0.002630)) AND dv24([*,0.001607)) AND dv65([1.291140,1.363690)) → C2 4
dv13([0.703171,0.732237)) AND dv35([*,0.994927)) AND dv65([1.291140,1.363690)) → C2 4

dv20([0.070858,*)) AND dv21([0.707026,*)) AND dv34([*,0.007870)) → C2 4
dv11([0.259898,*)) AND dv30([*,0.500564)) AND dv64([0.006496,0.006996)) → C2 4
dv12([*,0.015801)) AND dv25([0.012418,*)) AND dv66([0.327994,0.351801)) → C2 4
dv11([0.259898,*)) AND dv23([0.001868,0.002630)) AND dv30([*,0.500564)) → C2 4

Table 4. Rules for C5 generated by rough set theory using non-dominated solution data.

rule number of data
dv11([*,0.192853)) AND dv18([*,0.014534)) AND dv53([*,0.010481)) → C5 4

dv5([3.205220,4.976520)) AND dv18([*,0.014534)) AND dv45([*,0.622205)) → C5 4
dv37([*,0.001320)) AND dv40([*,0.039847)) AND dv49([0.994318,0.995602)) → C5 4
dv40([*,0.039847)) AND dv49([0.994318,0.995602)) AND dv55([*,0.015348)) → C5 4

dv22([*,-0.010476)) AND dv31([*,0.588815)) AND dv35([*,0.994927)) → C5 3
dv21([*,0.601322)) AND dv29([0.026988,0.028812)) AND dv51([*,0.001391)) → C5 3
dv2([*,0.410756)) AND dv33([0.972706,0.984433)) AND dv38([*,0.001229)) → C5 3

dv5([3.205220,4.976520)) AND dv8([-0.050745,-0.044714)) AND dv54([*,0.038919)) → C5 3
dv40([*,0.039847)) AND dv43([0.023762,0.025468)) AND dv59([*,0.686297)) → C5 3

dv29([0.026988,0.028812)) AND dv40([*,0.039847)) AND dv43([0.023762,0.025468)) → C5 3

Table 5. Rules for C10 generated by rough set theory using non-dominated solution data.

rule number of data
dv13([0.732237,*)) AND dv22([0.030320,*)) AND dv39([0.011883,*)) → C10 3
dv33([0.984433,*)) AND dv48([0.007403,*)) AND dv56([0.423662,*)) → C10 2

dv20([0.049659,0.070858)) AND dv44([0.496361,0.512868)) AND dv51([0.001885,*)) → C10 2
dv23([0.002630,*)) AND dv33([0.984433,*)) AND dv51([0.001885,*)) → C10 2

dv10([2.14560,2.967960)) AND dv32([0.875713,*)) AND dv59([0.721385,*)) → C10 2
dv13([0.732237,*)) AND dv18([0.044527,*)) AND dv51([0.001885,*)) → C10 2
dv13([0.732237,*)) AND dv34([0.008203,*)) AND dv51([0.001885,*)) → C10 2
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1. Knowledge by SOM

The resulting 302 all evaluated solutions have been projected onto the two-dimensional map of SOM. Fig-
ure 10 shows the resulting SOM with nine clusters taking the four objective functions into considering.
And Fig. 11 shows the SOMs colored by the four objective values, respectively. Figures 11a and 11b shows
that the objectives of the shift of aerodynamic center and the transonic CMp can obtain the lower values
simultaneously. These figures also reveal the tendency which both objectives can acquire the high values
simultaneously. However, as there is an individual that has highest value of the shift of aerodynamic center
and does not have highest value of the transonic CMp, that tendency is obscure on colored SOM. Especially,
as ARMOGA generates a large number of better solution more than worse solutions due to the range adap-
tation, the obscurity is encouraged. Therefore, it is not good that the bias of solutions exists in the design
space from all solutions to discuss the correlation for all evaluated solutions. The cleaning or disposition of
solution is needed using response surface method. As Figs. 11c and 11d show that there is a severe tradeoff
between the transonic CD and the subsonic CL in the general design space, a sweet spot does not exist for
all objectives. However, this design space can have a sweet spot when the subsonic CL is sacrificed for the
other objectives. In the case of the subsonic CL sacrifice for substantial flyback-booster design, high-lift
devices must be considered for its landing.

In Figs. 12a, 12c, and 12d, the similar design knowledge is confirmed regarding the dv7, dv18, and dv22
which have the influence for the objective functions in the design space generated by the non-dominated
solutions. However, the knowledge in the design space is not clear because of the diversity and bias of the
evaluated solutions. Although the other design variables, such as dv12, dv40, dv47, dv54, dv55, and dv61,
seems to have the influence for the transonic CD in Figs. 12b, 12e, 12f, 12g, 12h, and 12i, there is no specific
characteristics on colored SOM as a whole.

2. Knowledge by ANOVA

Figure 13 shows the ANOVA results for 302 all solutions. This reveals that the influence of design variables
for all solutions is similar to one for non-dominated solutions shown in Fig 8. That is, the design knowledge
corresponds to the information in the design space generated by the non-dominated solutions. F1 and F2

have the subordinate relation each other. Dv18 is effective to F3 and F4. Therefore, there is a severe tradeoff
between them in the design space generated by all solutions. The notable information is to correspond
between the knowledge from all and non-dominated solutions. That is, the knowledge from non-dominated
solutions is conserved for design space generated by all solutions.

3. Knowledge by Rough Set Theory

The rules are generated by similar procedure which uses for non-dominated-solution data. The obtained rule
is summarized in Tables 7 to 10. This rule is also similar to one from non-dominated solutions. Although
SOM has perturbation because of a large number of data shown in Fig. 12, rough set theory reveals the
similar characteristic design variables with the influence to objective functions compared with the rule from
non-dominated solutions. But, notable design variables should find out to interpret rules. Generally, it
becomes the problem difficulty to use rough set theory for a large number of design variables.

Table 6. Features of the clusters with the extreme objective function values on SOM of all solutions.

cluster particularity of performance improvement
C1 shift of aerodynamic center
C3 transonic CMp

C4 transonic CD

C8 subsonic CL
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Figure 10. SOM of the evaluated all solutions in the four dimensional objective function space.

(a) shift of the aerodynamic center (b) transonic CMp

(c) transonic CD (d) subsonic CL

Figure 11. SOMs of the evaluated all solutions colored by the objective functions. The symbol ˆ denotes the
respective extreme non-dominated solutions.
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(a) dv7 as the x coordinate of wing

position to fuselage

(b) dv12 as the camber height at root

forward

(c) dv18 as the camber height at kink

rearward

(d) dv22 as the camber height at tip

rearward

(e) dv40 as one of the thickness at kink

forward

(f) dv47 as one of the thickness at kink

rearward

(g) dv54 as one of the thickness at tip

forward

(h) dv55 as one of the thickness at tip

forward

(i) dv61 as one of the thickness at tip

rearward

Figure 12. SOMs colored by characteristic design variables.

Table 7. Rules for C1 generated by rough set theory using all-solution data.

rule number of data
dv7([0.379569,0.463235)) AND dv18([*,0.06781)) AND dv35([0.995614,*)) → C1 20

dv18([*,0.006781)) AND dv22([*,-0.011248)) AND dv42([0.402889,*)) → C1 20
dv18([*,0.006781)) AND dv42([0.402889,*)) AND dv57([0.025121,0.027792)) → C1 19
dv18([*,0.006781)) AND dv25([0.011960,0.012410)) AND dv42([0.402889,*)) → C1 18

dv3([*,55.205799)) AND dv18([*,0.006781)) AND dv24([0.001757,*)) → C1 17
dv18([*,0.006781)) AND dv37([0.001476,0.002020)) AND dv42([0.402889,*)) → C1 17
dv22([*,-0.011248)) AND dv42([0.402889,*)) AND dv60([0.848821,0.870887)) → C1 16

dv3([*,55.205799)) AND dv40([0.040085,0.054506)) AND dv68([0.734865,0.798422)) → C1 16
dv3([*,55.205799)) AND dv40([0.040085,0.054506)) AND dv71([-6.333930,*)) → C1 15
dv18([*,0.006781)) AND dv19([0.156790,0.235667)) AND dv42([0.402889,*)) → C1 15
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(a) F1 (b) F2

(c) F3 (d) F4

Figure 13. Proportion of design-variable influence for the objective functions in the all-solution space using
ANOVA.

Figure 14. Cluster name on SOM from all solutions in the four dimensional objective function space.
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Table 8. Rules for C3 generated by rough set theory using all-solution data.

rule number of data
dv28([*,0.336057)) AND dv62([0.009258,*)) AND dv69([-4.622460,*)) → C3 7

dv7([0.379569,0.463235)) AND dv14([*,0.021668)) AND dv32([0.856722,0.881603)) → C3 7
dv7([*,0.379569)) AND dv32([*,0.856722)) AND dv37([0.002020,*)) → C3 7

dv3([62.753700,*)) AND dv34([*,0.007820)) AND dv52([0.001690,0.001762)) → C3 6
dv23([*,0.001821)) AND dv51([0.002018,*)) AND dv52([0.001690,0.001762)) → C3 6

dv50([0.008145,0.008867)) AND dv51([0.002018,*)) AND dv52([0.001690,0.001762)) → C3 5
dv6([302.364990,*)) AND dv7([*,0.379569)) AND dv11([0.264078,*)) → C3 5

dv1([0.183163,0.196521)) AND dv32([*,0.856722)) AND dv48([0.007955,*)) → C3 5
dv18([0.006781,0.041033)) AND dv22([0.032237,*)) AND dv30([*,0.501708)) → C3 5

dv16([0.001324,0.038344)) AND dv33([0.970830,0.982542)) AND dv61([0.983121,*)) → C3 5

Table 9. Rules for C4 generated by rough set theory using all-solution data.

rule number of data
dv18([*,0.006781)) AND dv54([*,0.43352)) AND dv58([*,0.515947)) → C4 14

dv3([*,55.205799)) AND dv51([*,0.001529)) AND dv67([*,-1.647800)) → C4 13
dv40([*,0.040085)) AND dv51([*,0.001529)) AND dv67([*,-1.647800)) → C4 12

dv18([*,0.006781)) AND dv20([0.041139,0.067107)) AND dv58([*,0.515947)) → C4 11
dv20([0.041139,0.067107)) AND dv51([*,0.001529)) AND dv67([*,-1.647800)) → C4 9

dv6([294.427002,302.364990)) AND dv9([*,-1.487150)) AND dv10([*,2.088340)) → C4 9
dv6([294.427002,302.364990)) AND dv10([*,2.088340)) AND dv21([*,0.614866)) → C4 9
dv22([*,-0.011248)) AND dv61([*,0.974320)) AND dv70([-5.336230,-5.236000)) → C4 9

dv31([*,0.598579)) AND dv40([*,0.040085)) AND dv58([*,0.515947)) → C4 8
dv31([*,0.598579)) AND dv57([*,0.025121)) AND dv58([*,0.515947)) → C4 8

Table 10. Rules for C8 generated by rough set theory using all-solution data.

rule number of data
dv29([0.028516,*)) AND dv48([0.007955,*)) AND dv51([0.001529,0.002018)) → C8 7

dv1([0.196521,*)) AND dv29([0.028516,*)) AND dv32([0.881603,*)) → C8 7
dv29([0.028516,*)) AND dv32([0.881603,*)) AND dv65([1.246800,1.424610)) → C8 7
dv29([0.028516,*)) AND dv30([0.501708,0.523840)) AND dv48([0.007955,*)) → C8 6
dv18([0.041033,*)) AND dv30([0.501708,0.523840)) AND dv35([0.995614,*)) → C8 6
dv37([0.002020,*)) AND dv51([0.001529,0.002018)) AND dv61([0.983121,*)) → C8 6

dv7([0.463235,*)) AND dv24([0.001757,*)) AND dv25([*,0.011960)) → C8 4
dv18([0.041033,*)) AND dv20([0.067107,*)) AND dv58([0.515947,0.525239)) → C8 4

dv10([2.088340,3.344390)) AND dv20([0.041139,0.067107)) AND dv48([0.007955,*)) → C8 4
dv20([0.067107,*)) AND dv29([0.028516,*)) AND dv48([0.007955,*)) → C8 4
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V. Conclusion

The three data mining techniques have been carried out for the aerodynamic design optimization result
of flyback booster wing. These revealed the knowledge in the design space. In addition, the features of three
data mining techniques were shown. SOM revealed that ‘which’ and ‘how’ design variable influences the
objective function. ANOVA showed that ‘which’ design variable influences. Whereas, rough set theory had
different disposition. Rough set theory was useful to narrow down to a detailed design space, when there were
many individuals to satisfy a decision attribute, and also there were considerable design variables. However,
when there was no considerable design variable and there were many design variables, it was difficult to
interpret a rule. Because it was not easy to interpret the physical meaning which the combination of design
variables has. Although each data mining could compensate with the respective disadvantages, SOM was
an essential data mining technique.

Moreover, data mining was performed to non-dominated and all evaluated solutions, respectively. Conse-
quently, the each design knowledge was similar regarding the tradeoffs, the correlation among the objective
functions and design variables, and the influence of design variables. In the present optimization results,
the design knowledge from non-dominated-solution data could apply to the design space generated by all
solutions, because all solutions included non-dominated solutions. Data mining is essential to understand
design space and solve optimization.
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