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Abstract
Numerical simulation has been performed corre-

sponding to recent experiment around delta wings
with sharp and blunt leading edges at NASA Lan-
grey Research Center, which indicates the second pri-
mary vortex and quantitative Reynolds-number ef-
fects. Three one-equation turbulence models are ex-
amined on the unstructured hybrid mesh and the mod-
ified Spalart-Allmaras turbulence model is found most
effective to capture a complex vortex structure. The
adaptive mesh refinement method at a vortex center
is also applied. Visualization of the computational re-
sults suggests that the second primary vortex may be
a developing share layer merging to an open separation
of the primary vortex. Not only the volume-mesh re-
finement but also the surface-mesh refinement is found
important to capture Reynolds-number effects around
a delta wing with a blunt leading edge.

Introduction

DELTA wing has been used for space transport
and supersonic transport because of high aerody-

namic performance. Those transports utilize leading-
edge separation at high angles of attack for take-off
and landing. Analyses of the leading-edge separa-
tion have been performed by many experiments and
computations. Previous numerical works about the
leading-edge separation around a delta wing are given
by for example, Ekaterinaris and Schiff,1 and Mu-
rayama et al.2

Recent experiment at NASA Langley Research Cen-
ter investigated effects of leading-edge bluntness and
Reynolds-number difference.3,4 In this experiment,
the sharp and blunt leading edges are used. The
sharp leading edge produces a typical conical vortex
structure. Suction peak due to the leading-edge sep-
aration occurs almost at the same semispan locations
for the entire wing. While the blunt leading edge pro-
duces a more complex flow. This leading edge delays
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the leading-edge separation onset downstream and an-
other suction region appears inboard of the primary
vortex. Reference 3 named this suction peak as the
‘second primary vortex’.

Experiment also examined Reynolds-number effects
quantitatively at the Reynolds numbers of 6 million
and 60 million. In the case of the sharp leading
edge, Reynolds-number effects are not significant be-
cause the separation point is fixed at the leading edge.
Whereas, in the case of the blunt leading edge, the
formation of the leading-edge vortex at the Reynolds
number of 60 million is shifted downstream at least
20% root chord compared with that at the Reynolds
number of 6 million.

In this paper, the second primary vortex has been
investigated numerically through CFD visualization.
Because of the high Reynolds number range in ex-
periment, three turbulence models were examined. In
addition, Reynolds-number effects were simulated and
quantitative agreements were obtained.

Computational Method

In this study, the unstructured mesh method5,6 is
used to simulate the flow field. The three-dimensional
Navier-Stokes equations are computed with a finite-
volume cell-vertex scheme. The unstructured hybrid
mesh method7 is applied to capture the boundary
layer accurately and efficiently. The Harten-Lax-van
Leer-Einfeldt-Wada Riemann solver8 is used for the
numerical flux computations. The Venkatakrishnan’s
limiter9 is applied for reconstructing second order ac-
curacy. The lower-upper symmetric-Gauss-Seidel im-
plicit scheme10 is applied for time integration.

Furthermore, in the unstructured hybrid mesh
method, an adaptive mesh refinement method is used
to increase the mesh resolution in the vicinity of the
vortex centers.11 Vortex centerlines are identified by
the vortex-center identification method12 as the dis-
tinct topological flow feature leading to the mesh re-
finement with accuracy and efficiency. In the region of
tetrahedral unstructured mesh, a tetrahedra bisection
algorithm is used.13,14 The prisms are refined along
the normal-to-surface direction to preserve the struc-
ture of the mesh in case hanging nodes are on the edges
of the prisms.
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Turbulence Models
It is essential for accurate prediction of the leading-

edge separation vortex at high Reynolds numbers not
only to stifle the numerical diffusion but also to con-
sider the influence of turbulence modeling. Therefore,
the influence of turbulence models should be examined
carefully.

In this study, the Goldberg-Ramakrishnan (G-
R) one-equation model,15 the Spalart-Allmaras (S-
A) one-equation model16 and the modified S-A one-
equation model by Dacles-Mariani et al.17 are com-
pared without transition. In addition, the same cases
are computed without any turbulence model for a com-
parison purpose (referred as a laminar flow later). The
modified S-A model is briefly explained here:

1. The production term is modified to describe a
scalar measure of the deformation tensor S as
the following equation using the strain rate |s|.
Where, Ωij is the vorticity tensor, Sij is the strain
velocity tensor.

S = |ω|+ 2 min(0., |s| − |ω|) (1a)
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The production term of the original S-A model de-
pends only on the vorticity |ω|. However, because
the value of the production term becomes large in
vortical flows, the resulting turbulent kinematic
viscosity becomes too large. This acts as the nu-
merical diffusion to a vortex. The strain rate
is introduced to overcome this overestimation, so
that the production term is limited. This method
using both the vorticity tensor and the strain ve-
locity tensor is suggested by Kato-Launder in the
improved k-ε two-equation turbulence model.18

2. In the original S-A model, the destruction term
disappears completely in the far-wall region. A
modification to this term is implemented by
checking the ratio between production and dis-
sipation of the standard high Reynolds number
Jones-Launder k-ε model19 using the term Pk.
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where the constant values of cµ, c1 and c2 are
taken from the original Jones-Launder k-ε model.
The constant value of cb1 is taken from the original
S-A model.

a) Three views of computational geometry

b) Close-up view of sharp leading edge

c) Close-up view of blunt leading edge

Fig. 1 Delta wing geometries for numerical simu-
lation.

Reference 20 reported that this modified S-A model
captured the wing tip vortex successfully.

Results
The geometries used in the present study are based

on the wind tunnel models in Ref. 3. They correspond
to sharp and blunt leading edge shapes at a sweep an-
gle of 65 deg. The present research focuses on the
blunt leading edge named as ‘medium-radius leading
edge’ in Ref. 3. Figure 1 shows the delta wing ge-
ometries with the sharp and the blunt leading edge for
numerical simulation. The flow conditions are a Mach
number of 0.4, an angle of attack of 13 deg and the
Reynolds numbers of 6 million and 60 million based
on the wing mean aerodynamic chord.

Bluntness Effect

The bluntness effect is discussed with flows around
sharp and blunt leading edges at the Reynolds number
of 6 million. The unstructured hybrid mesh is gener-
ated, and then the adaptive mesh refinement method is
applied to improve the mesh resolution in the vicinity
of the vortex center. Figures 2a and 2b show the vortex
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a) Vortex centerlines

used as refinement indi-

cator

b) Cells containinig

vortex centerlines and

neighbouring cells

c) Crossflow plane at 60% root chord; initial mesh

(left) and adaptive mesh (right)

Fig. 2 Adaptive refinement for the sharp leading-
edge case.

centerlines and their neighbouring cells, respectively,
for the sharp leading-edge case. Figure 2c shows cross-
flow plane views of the initial and the refined meshes at
60% location of the root chord. Figure 3 shows similar
views for the blunt leading-edge case. The compar-
ison of all mesh numbers are summarized in Fig. 4.
Large increase of number of tetrahedra indicates that
the mesh resolution is mainly improved at the vicinity
of the vortex center.

Adaptive Refinement and Turbulence Model Effects in
the Sharp Leading-Edge Case

Computed surface pressure distributions are com-
pared at 40 and 60% locations of the root chord
with experiment in Figs. 5 and 6, respectively. From
Figs. 5a and 6a, the adaptive refinement is found to
improve the suction peak of the primary vortex. Al-
though the position of the suction peak is predicted
correctly, the value of the suction peak does not agree
well with experiment. In Fig. 6, the computed pres-
sure distribution at the inboard wing does not agree
well with experiment, either, because no sting fairing
is modeled in this computation.

To improve the numerical prediction of the suction
peak, the original and modified S-A turbulence models
are applied in addition to the laminar flow compu-
tation as shown in Figs. 5b and 6b. In the case of
the laminar flow simulation, the suction peak appears
worst among the computations. The original S-A

a) Vortex centerlines

used as refinement indi-

cator

b) Cells containinig

vortex centerlines and

neighbouring cells

c) Crossflow plane at 60% root chord; initial mesh

(left) and adaptive mesh (right)

Fig. 3 Adaptive refinement for the blunt leading-
edge case.

Fig. 4 Comparison of volume meshes for sharp
and blunt leading-edge cases.

model performs similar to the G-R model. In Fig. 5b,
the modified S-A model is found to predict the suction
peak much better than others. In Fig. 6b, the modified
S-A turbulence model also captures the suction peak
of the secondary vortex. The corresponding surface
streamlines in Fig. 7 shows the secondary separation
as well as the tertiary separation. Further improve-
ments might require higher order space discretization,
for example, the compact scheme.

The modified S-A model improves the production
and destruction terms of the turbulence transport
equation of the original S-A model. These two terms
are examined, respectively, to identify the key influ-
ence to capture the secondary separation. Figure 8
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a) Effect of adaptive mesh refinement

b) Effect of turbulence modeling

Fig. 5 Comparison of computed surface pressure
coefficients with experiment for a flow past the
sharp leading edge at x=c = 0:4.

reveals that the production term has the influence
while the destruction term does not.

According to the modification in Eq. (1a) for the
production term of the transport equation, the value
of the eddy viscosity becomes smaller in the vortical
region. Figure 9 shows comparisons of contours at a
crossflow plane and isosurfaces of the computed eddy
viscosities between the original and the modified S-
A models. It reveals that the modified S-A model
captures the detailed vortex structure and restrains
amount of eddy viscosity.

The Second Primary Vortex in the Blunt
Leading-Edge Case

The experiment suggests that blunt leading edge
delays primary separation downstream and that an-
other suction region, named as the second primary
vortex, appears inboard of the primary vortex from
40% to 60% location of the root chord. The com-
puted surface pressure distributions at 20, 40 and 60%

a) Effect of adaptive mesh refinement

b) Effect of turbulence modeling

Fig. 6 Comparison of computed surface pressure
coefficients with experiment for a flow past the
sharp leading edge at x=c = 0:6.

Fig. 7 Computed surface streamlines for a flow
past the sharp leading edge using the modified S-A
model at the Reynolds number of 6 million.

locations of the root chord in the blunt leading-edge
case are compared with experiment in Fig. 10. Fig-
ure 10a shows that the laminar computation forms
the primary vortex too early. This suggests the ne-
cessity of a turbulence model because the turbulence
models predict the attached flow near the wing apex.
The modified S-A model predicts the secondary vor-
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Fig. 8 Comparison of surface pressure coefficients
with experiment by using various S-A model mod-
ifications.

tex similar to the sharp leading-edge case. Especially
only this model shows a relatively flat pressure distri-
bution at the 40% chord station from the 70% to 90%
semispan region in Fig. 10b, indicating the formation
of the second primary vortex. Moreover, this turbu-
lence model successfully predicts that the separation
suction peak moves downstream due to bluntness. Fig-
ure 11 shows that the modified S-A model captures a
vortex structure better than the original S-A model.

Figure 12 shows the computed surface stream-
lines and pressure distribution using the modified S-
A model. The region of pressure plateau shown in
Fig. 10b is found at 35–57% root chord. Its loca-
tion agrees well with experiment. Figure 13 shows the
vortex structure using helicity contours at the cross-
flow plane. It is found that the first primary and the
second primary vortices rotate in the same direction.
Figure 14 shows the comparison of the streamlines be-
tween near the wall and through the second primary
vortex. This figure indicates streamlines near the wall
at the wing apex flow straight to downstream, while
streamlines inside of the boundary layer merge into
the second primary vortex. Figure 15 reveals that the
share layer occurs from the leading edge. Figure 16
shows the separation lines on the upper surface of the
wing. Separation occurs in the middle of the blunt
leading edge. This separation line suggests Open Sep-
aration.21,22 The second primary vortex suggested in
experiment is found to be a developing share layer
merging to the open separation. This shear layer is
perhaps common in the open separation, but it hap-
pens to be emphasized due to the combination of the
geometry and flow condition in this case. In the case of
the sharp leading edge, the separation is a closed sep-
aration because a separation line always starts from
a wing apex. Then, the flow has a typical, conical
structure.

a) Crossflow plane at x=c = 0:6

b) Isosurface of value=80

Fig. 9 Visualization of eddy viscosity for a flow
past the sharp leading edge; using the S-A model
(left) and using the modified S-A model (right).

Reynolds-Number Effects

The computational conditions at the Reynolds num-
bers of 6 million and 60 million are chosen to examine
Reynolds-number effects. The delta wing only with
the blunt leading edge is computed because Reynolds-
number effects are found pronounced in the blunt
leading-edge case. The mesh with 95,624 surface mesh
points is used for both Reynolds numbers, and the re-
fined mesh with 169,458 surface mesh points is used
for the Reynolds number of 60 million. The close-up
views of both surface meshes in the vicinity of the wing
tip are shown in Fig. 17. Comparison of the meshes
is summarized in Fig. 18. Although the number of
tetrahedron points is not so large in the case of fine
surface mesh because of no adaptive mesh refinement,
the fine mesh has larger prisms in proportion to the in-
creased surface mesh points near the wall. The coarse
and fine meshes have maximum dimensionless wall dis-
tances y+

max of 4.06 and 1.46, respectively, at the first
mesh points from the wall.

The computed surface pressure distributions at 40,
60 and 80% locations of the root chord using the G-
R and the modified S-A model are compared with
experiment in Figs. 19 and 20, respectively. The G-
R model predicts too large separation on the coarse
mesh even with the adaptation and too small sepa-
ration on the fine mesh. The original S-A model is
similar to the G-R model and thus the result is not
shown here. Only the fine-mesh result using the mod-
ified S-A model predicts the separation onset similar
to experiment. The suction peak, however, is not cap-
tured adequately in Fig. 20c because the mesh is not
fine enough. The adaptive mesh refinement was not
applied to the fine mesh because the memory require-
ment became too large. These figures reveal a fine
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surface mesh is needed at least to capture the sepa-
ration onset correctly at the high Reynolds number.
Figure 21 shows the comparison of surface streamlines
using the G-R and modified S-A models. This fig-
ure shows that the modified S-A model captures the
separation and attachment lines of the primary and
secondary vortices.

The leading-edge pressure distributions are shown
in Fig. 22 to indicate a separation onset. Computa-
tional results about the separation onset agree with
experimental trend. Figure 23 shows the comparison
of computed vortex centerlines at both Reynolds num-
bers using the G-R and the modified S-A models. This
figure shows that the G-R model predicts the sepa-
ration onset downstream compared with experiment,
whereas that the separation onset using the modified
S-A model agrees well with experiment. The modified
S-A model predicted Reynolds-number effects quanti-
tatively.

Conclusion
Numerical simulation around delta wings with sharp

and blunt leading edges has been performed on un-
structured hybrid mesh to investigate the leading-
edge bluntness and Reynolds-number effects suggested
by experiment. The modified Spalart-Allmaras one-
equation turbulence model was found most accurate
to capture the complex vortex structure including the
secondary vortex. At the Reynolds number of 6 mil-
lion, this model captured the second primary success-
fully as indicated in experiment. The visualizations of
the computational results suggested that this second
primary vortex is a developing share layer merging to
the open separation due to the leading-edge bluntness.

The computation at the Reynolds number of 60
million using the modified S-A model predicts the
Reynolds-number effect of delayed onset of the leading-
edge separation successfully. Not only the volume-
mesh refinement but also surface-mesh refinement was
found important to capture Reynolds-number effects.
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a) x=c = 0:2

b) x=c = 0:4

c) x=c = 0:6

Fig. 10 Comparison of computed surface pres-
sure coefficients with experiment for a flow past
the blunt leading edge at the Reynolds number of
6 million.

a) Crossflow plane at x=c = 0:6

b) Isosurface of value=80

Fig. 11 Visualization of eddy viscosity for a flow
past the blunt leading edge; using the S-A model
(left) and using the modified S-A model (right).

Fig. 12 Computed surface streamlines (left) and
pressure distribution (right) for a flow past the
blunt leading edge using the modified S-A model
at the Reynolds number of 6 million.
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Fig. 13 Computed helicity contours crossflow
plane at 40% for a flow past the blunt leading edge
using the modified S-A model.

Fig. 14 Comparison of computed streamlines;
starting from outside of the boundary layer (top),
starting from inside of the boundary layer and go-
ing through the second primary vortex (bottom).

Fig. 15 Computed helicity contours using the
modified S-A model on chordwise view at 24% lo-
cation where a second primary vortex exists.

Fig. 16 Computed separation lines and surface
streamlines.

a) Close-up view of coarse mesh with adaptive re-

finement

b) Close-up view of fine mesh

Fig. 17 Comparison of unstructured mesh at wing
tip area.

Fig. 18 Comparison of volume meshes between
coarse and fine meshes.
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a) x=c = 0:4

b) x=c = 0:6

c) x=c = 0:8

Fig. 19 Comparison of computed surface pres-
sure distributions with experiment using the G-R
turbulence model at the Reynolds number of 60
million.

a) x=c = 0:4

b) x=c = 0:6

c) x=c = 0:8

Fig. 20 Comparison of computed surface pressure
distributions with experiment using the modified
S-A turbulence model at the Reynolds number of
60 million.
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Fig. 21 Computed surface streamlines at the
Reynolds number of 60 million using the G-R
model (left) and the modified S-A model (right)
on the fine mesh.

Fig. 22 Comparison of leading-edge pressure dis-
tributions using the modified S-A model at the
Reynolds numbers of 6 million and 60 million with
experiment.

a) Vortex centerlines using the G-R turbulence

model

b) Vortex centerlines using the modified S-A tur-

bulence model

Fig. 23 Comparison of computed vortex center-
lines and separation onset points at the Reynolds
number of 6 million (left) and 60 million (right).
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